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Abstract—Aberrant behavior in mobile unmanned 

autonomous weapons is likely. Regardless of the degree of 
autonomous control, aberrant behavior can be caused by design 
flaws, system malfunction, malevolent control penetration, and 
human error. In fully autonomous operation, unanticipated 
emergent behaviors are both likely and desirable in dealing with 
the infinite possibilities of situational reality. Simulation and test 
of individual units with these autonomous capabilities have their 
own sets of challenges, and cannot predict how these units will 
behave in group operations. Individual behavior cannot be 
ignored as simulation or testing advances to group behavior, and 
poses an explosive centralized monitoring and evaluation task 
with large groups. This paper explores four concepts that when 
combined indicate a promising ability for fast, accurate, 
sophisticated aberrant behavior detection and evaluation: 1) a 
pattern from organic life for social behavior monitoring, 2) 
trajectory recognition as augmentation of social monitoring, 3) 
massive pattern-based recognition exhibited in human domain 
expertise, and 4) a new VLSI processor architecture that can 
provide unbounded parallel pattern detection at constant speed. 

Social animal life exhibits built in systemic mechanisms 
for detecting aberrant behavior among its members, and 
mitigating that behavior if it is evaluated as intolerable. 
Studied examples include humans, elephants, penguins, 
ants and bees. This work identifies a foundation for 
employing that pattern in both pre-deployment device 
testing and in perpetual evaluations after deployment. The 
suggested approach was instigated by studies of Self-
Organizing Systems-of-Systems in a graduate systems-
engineering course at Stevens Institute of Technology, and 
deemed possible by capabilities of a new pattern detection-
engine technology. The foundation explored in this 
research was shaped by this targeted technology. The 
paper lays a platform for subsequent investigation, and 
concludes with suggestions for that work, how an 
Unmanned Autonomous Test System might incorporate 
this capability, and why Test and Evaluation should be 
untethered from its static life-cycle position and become an 
integral part of complex systems.  

Index Terms—anomalous behavior, multi-agent systems, 
pattern recognition, social behavior, testing. 
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I. INTRODUCTION 

In The Principles of Ethics (Spencer 1893) Herbert 
Spencer1 reaches into the animal kingdom to support his 
theories on the origins and enforcements of natural laws 
within social groups:  

“There arises such general consciousness of the need for 
maintaining the limits, that punishments are inflicted on 
transgressors — not only by aggrieved members of the 
group, but by the group as a whole. A ‘rogue’ elephant 
(always distinguished as unusually malicious) is one 
which has been expelled from the herd: doubtless because 
of conduct obnoxious to the rest — probably aggressive. 
It is said that from a colony of beavers an idler is 
banished, and thus prevented from profiting by labours in 
which he does not join: a statement made credible by the 
fact that drones, when no longer needed, are killed by 
worker-bees. The testimonies of observers in different 
countries show that a flock of crows, after prolonged 
noise of consultation, will summarily execute an 
offending member. And an eye-witness affirms that 
among rooks, a pair which steals the sticks from 
neighbouring nests has its own nest pulled to pieces by 
the rest.”  

Though stories of beaver and rook justice, and anecdotal 
witness to crow judgment and execution exist, scientific 
evidence is illusive; nevertheless the values and varieties of 
peer judgment constraining and enforcing societal behavioral 
are well known among humans and are studied and observed 
in some animal (Flack et. al. 2006) and insect societies 
(Monnin 2002, Heinze 2003, Ratnieks 2006). 

This paper suggests that peer evaluation of behavior is 
necessary and valuable in the domain of autonomous 
unmanned systems (UAS) when they are working together as 
a team on a warfighting mission, and perhaps even more so 
when these systems are being tested, as they are less likely to 
be well behaved. The suggestion is prompted by the 

 
1Wikipedia (01Nov2008): “British philosopher and sociologist, Herbert 

Spencer was a major figure in the intellectual life of the Victorian era. He was 
one of the principal proponents of evolutionary theory in the mid nineteenth 
century, and his reputation at the time rivaled that of Charles Darwin. Spencer 
was initially best known for developing and applying evolutionary theory to 
philosophy, psychology and the study of society.” 
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positioning and planning for an Unmanned Autonomous Test 
System described in a 2008 Broad Area Announcement 
(Office of the Secretary of Defense 2008):  

“Due to the mobility inherent in all UAS, their close 
proximity to humans (e.g., soldiers, testers, population 
centers, etc.) and their capability for unpredictable 
behavior; a reliable fail-safe system is needed. This effort 
seeks technologies for all aspects of system safeties as 
they pertain to UAS, Systems of Systems, and Complex 
Systems. This includes safe test conduct, testing for top 
level mishaps, safety fail-safes, truth data assessment for 
safety, and safeties associated with large numbers of 
collaborating UAS.2”  

It is also recognized that testing outcomes can have:  
“an almost infinite number of possibilities, depending on 
UAS cognitive information processing, external stimuli, 
operational environment, and even possible random 
events (hardware/software failures, false stimuli, 
emergent behavior, etc.).3”  

Emergent behavior is later recognized as something less 
than random: 

“UAS formation control, swarming, and aggregate 
intelligent agent behavior are an emergent characteristic 
of this technology arena. ... System behavior, in a multi-
agent system, can be difficult to predict and often 
unexpected system behaviors occur which lead to poor 
system performance. These unexpected system behaviors 
result from unforeseen group actions of agent groups and 
agent-group behavior that is not directly coded by the 
agent designers.4” 

Such unexpected system behaviors can be good as well as 
bad. In fact, the goal of fully autonomous intelligent behavior 
is creative problem solving in situations without precedence. 
It is unlikely that unleashing a swarm of UAS that are only 
capable of dealing with well defined cataloged situations will 
be effective. 

Isaac Asimov recognized this need when he first proposed 
the three laws of robotics in his original 1942 story of 
“Runaround” in the I, Robot anthology (Asimov 1942). If you 
are going to unleash intelligent autonomous entities to mingle 
with humanity you must have some rules that protect the 
humans. Even the awesome positronic brain Asimov 
conceived was incapable of consulting a policy and 
procedures manual prescribing required behavior for all 
possible human-machine interactions. He wrote many books 
exploring the ways in which three simple behavior-governing-
principles would resolve sticky man-machine confrontations 
and interactions favorably. 

The lesson from Asimov is that we cannot know the 
situations that will arise, nor can we directly control how 
things should play out. Instead, we must recognize and 
embrace uncertainty within a framework of governance 

 
2 From (Office of the Secretary of Defense 2008) p 48. 
3 ibid p. 23. 
4 ibid p. 54. 

principles that will bound the outcomes within an acceptable 
space. The principle built on in this paper classifies behavior 
as unacceptable based on absolute boundary-infraction 
recognition, rather than attempts at imperfect reasoning or 
restrictions to specifically approved behaviors. 

Asimov’s positronic brain was invincibly obedient and not 
subject to psychoses, illness, error, or possession by another 
entity. UAS as we will know them are not likely to be so 
endowed. Nor will they have the real-time reasoning powers 
of the positronic brain. Which brings us to the fail-safe 
objective that unmanned autonomous system testing (UAST) 
seeks, and the challenge of “Confinement of UAS to safe 
‘play areas’5”. 

UAS will necessarily be tested and fielded in situations that 
have no precedence in cataloged responses. How will we 
constrain the outcomes to those we can live with? More to the 
point of this paper, how will we detect and classify 
unacceptable behavior in time to intervene if unacceptable 
consequences are the likely outcome? 

From studies of agile systems maturing since 1991 (Dove 
2001) I characterize the UAST domain as a class 1 
(reconfigurable) agile system that must test class 2 
(reconfiguring) agile systems.  

This agile-system class distinction is relatively recent, 
becoming evident when formulating a collaborative research 
project as a graduate course in the School of Systems and 
Enterprises at Stevens Institute of Technology (Dove 2007). 
The course reviews the research literature in various bodies of 
knowledge relevant to self organizing systems of all kinds, 
and challenges collaborative analysis to identify recurring and 
necessary patterns across bodies of knowledge. Four cycles 
through this investigation to date is beginning to yield some 
 

5 ibid p. 23. 

 
Fig 1: From the survey reported in (Moshkina and Arkin 2007) – 
Responsibility for Lethal Errors by Responsible Party. The soldier was 
found to be the most responsible party, and robots the least.
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promising fundamental patterns. One in particular is the 
genesis of this paper’s focus: successful social systems often 
exhibit a pattern of peer behavior-enforcement arising when 
the stability of the social system is put at risk. In certain 
animal societies, this enforcement ranges from one extreme of 
death to the other extreme of disciplining youth in proper 
behavior. 

Though I’ve been unable to find proper research literature 
on the classic example widely seen and understood in the 
2006 academy award winning documentary March of the 
Penguins, the lesson is Indelible. I refer to the scene where 
one female lost her egg to the Arctic cold and tried to replace 
it by stealing another’s egg – other females in the immediate 
vicinity banded together and prevented this from happening. 

A related body of work led by Ronald Arkin at Georgia 
Institute of Technology is concerned with ethical behavior of 
UAS used in military operations (Arkin 2007). The recent 
survey (Moshkina and Arkin 2007) investigated opinions 
about the use of, and responsibilities for, lethal autonomous 
systems among four demographic groups. A total of 430 
respondents were distributed demographically as 54% robotics 
researchers, 30% military, 16% policymakers, and 27% 
general public.  

Figure 1 depicts who the respondents felt responsible when 
behavior is unacceptable. Our interest here is in the 
autonomous devices, not the “robot as extension” case, where 
a human directs the unmanned system. Interesting to note: 
lethal mistakes made by a UAS are blamed on higher-level 
military, UAS designers, and politicians, in that order.  

The survey showed that all four demographic groups want 
ethical standards for UAS to be considerably higher than that 
for soldiers. Figure 2 shows how they felt about specific 
constraints that should be enforced.  

Monitoring for ethical behavior infractions is a subset of 
what must be monitoring for safety behavior overall.  

Unlike previous approaches at sophisticated behavior 
detection and classification through reasoning, I am 
suggesting an approach inspired by human expertise studies, 

where it appears that a vast quantity of simultaneously 
accessible “experience” patterns drives an immediate 
conclusion, rather than a sequential search or reasoning 
process. This approach is both suggested and made possible 
by a new processor architecture offering massively parallel 
pattern recognition capabilities with no tradeoffs among 
speed, capacity, complexity, and accuracy (Dove 2009). In 
any event, employing arithmetic processors with sequential 
instruction processing for situational judgment does not 
appear to be consistent with biological mechanisms – the ever 
present benchmark.  

What follows are four sections that discuss stepping stones 
bridging the concept of social peer-behavior monitoring to an 
end point of technology and techniques that appear up to the 
job – all with a safety and security focus for UAS under test 
and on mission. The next section, Social Behavior Leverage, 
examines work that could guide aberrant social behavior 
detection. Then Trajectory Behavior Leverage examines work 
that could guide errant UAS that wander from the mission 
plan for any reason. Detection Complexity Leverage then 
examines a direction that may remove the traditional problems 
of recognition complexity. Followed by Technology 
Leverage, which examines a new recognition engine with new 
capabilities that appear uniquely appropriate for the task. The 
paper finishes with a summary of how these stepping stones 
compliment each other, and final concluding remarks that 
suggest some next steps.  

II. SOCIAL BEHAVIOR LEVERAGE 

Our fundamental interest is in the ability to detect and 
evaluate certain aspects of the behavior of team members as 
they work toward a common goal. This common goal may 
encompass a set of tasks, which are not necessarily shared by 
all team members, but are nevertheless a part of the activities 
pursuing common goal achievement. Task plans for achieving 
this common goal will have constraints. For instance, the end 
may not justify any possible means. Achievement may also 
have constraints on team member behavior, e.g., team 
members are expected to work toward team goals according to 
an established coordination plan. 

A team is defined as a collection of members (agents) 
working toward a common goal. Working together implies 
some form of activity coordination. Coordination comes in a 
range of forms from centralized planning and micro-direction 
of the agents at the one extreme, to mindless local-reaction 
agent-behaviors resulting in emergent swarm effects at the 
other extreme. Our interest is in neither extreme, but rather 
with autonomous agents that possess and employ both self 
awareness and social awareness of other team members and 
their behaviors as they jointly pursue a mission. Agents will 
have a sense of team, and know when another agent is not 
behaving in the team’s interest.  

In a broader socially aware sense, the team’s interest 
includes the team’s image among outsiders – a weapon’s 
toting team member gone rogue can impair the team’s long 

 
Fig. 2: From the survey reported in (Moshkina and Arkin 2007) – Ethical 
Behavior for Soldiers and Robots. Applicability of ethical categories is 
ranked from more concrete and specific to more general and subjective 
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term survival likelihood. This is a new behavior focus not 
seen in prior research of multi-agent systems (MAS). 
However, foundation research exist in interdisciplinary work, 
including MAS coordination theory, detection and diagnosis 
of MAS behavior, social comparison theory, social behavior, 
teaming, and even the theories of mind and human expertise 
discussed later.  

(Malone and Crowston 1994) in a broad interdisciplinary 
survey of the “emerging research area, sometimes called 
coordination theory,” define coordination as “managing 
dependencies between activities.” They cited as motivation 
work beginning in the later ‘80s that exhibited “a growing 
interest in questions about how the activities of complex 
systems can be coordinated. In some cases this work was 
focused on coordination in parallel and distributed computer 
systems, in others, on coordination in human systems, and in 
many cases, on complex systems that include both people and 
computers.” Noting the onslaught of the electronically 
connected world, they proposed that new forms of organizing 
and new forms of coordination structures would emerge.  

(Malone and Crowston 1994) also observed that different 
disciplines were already exploring domain specific 
coordination concepts, and that there was now value to be 
gained in finding domain independent underlying principles of 
coordination. Their stated intent was to help kick-start the 
development of a theory of coordination by illuminating these 
cross-discipline similarities, noting that “It is not enough just 
to believe that different systems are similar, we also need an 
intellectual framework for ‘transporting’ concepts and results 
back and forth between the different kinds of systems.” This is 
germane here as I am suggesting that coordination concepts of 
social systems inform how we deal with aberrant behavior in 
UAS. 

About he same time as Malone and Crowston pulled 
together their survey, (Jennings 1993) modeled coordinated 
agent communities on a foundation of “commitments (pledges 
to undertake a specified course of action) and conventions 
(means of monitoring commitments in changing 
circumstances)”, and suggested that “all coordination 
mechanisms can ultimately be reduced to (joint) commitments 
and their associated (social) conventions.” Jennings shows 
why the behavior (alone) of a collection of agents as seen by 
an outside observer is insufficient to determine if coordination 
is present, and concludes that “coordination is best studied by 
examining the mental state of the individual agents.” He then 
goes on to say: “The exact make up of this mental state is still 
the subject of much debate, however there is an emerging 
consensus on the fact that it contains beliefs, desires, goals 
and commitments (intentions).”  

(Jennings 1993) suggests that “If all the agents could have 
complete knowledge of the goals, actions and interactions of 
their fellow community members and could also have infinite 
processing power, it would be possible to know exactly what 
each agent was doing at present and what it is intending to do 
in the future.” He goes on to note that this is infeasible in any 
community of reasonable complexity due to communication 

bandwidth and processing time. In our own human experience 
we see this to be true in team work, where some awareness of 
other team member activity is naturally maintained, but any 
attempt at totally detailed and continuous knowledge is 
impossibly overloading and counterproductive.  

Jennings raised issues that are addressed in Gal Kiminka’s 
Ph.D. thesis (Kaminka 2000a) and related publications, many 
coauthored with his thesis advisor Milind Tambe (Kaminka 
and Tambe 1997, 1998, 2000b). Kaminka pursued what 
Jennings dubbed the social conventions aspect, and developed 
a “mental state” representation based on goal hierarchies 
presumably shared by a team of agents – recognizing that 
some agents may have tasks different than others and some 
may choose to achieve a common task different than others. 
Notably his work features primary examples of unmanned 
autonomous (aerial) systems, where individual UAS (agents) 
monitor and recognize when a member of the team doesn’t 
behave as expected. Kaminka’s approach also enables an 
agent to detect self-failure often but not always.  

Kaminka was inspired by Leon Festinger’s seminal work on 
social comparison theory (Festinger 1954a), the first 
hypothesis of which states:  

“There exists, in the human organism, a drive to evaluate 
his opinions and abilities.”  

Which results, (Festinger 1954b)6 says, in a five-step social 
process of comparison and adjustment toward alignment, the 
first two of which are: 

1) This social process arises when the evaluation of 
opinions or abilities is not feasible by testing directly in 
the environment. 

2) Under such circumstances persons evaluate their 
opinions and abilities by comparison with others.  

(Kiminka 1997) kicks off this path of work in “Toward 
Social Comparison for Failure Detection”, by proposing a 
“novel complimentary approach to failure detection and 
recovery which is unique to multi-agent setting.” The key idea 
being “that agents use other agents as sources of information 
on the situation and the ideal behavior. The agents compare 
their own behavior, beliefs, goals, and plans to those of other 
agents, in order to detect failures in their own behavior. The 
agents reason about the differences, and draw useful 
conclusions regarding their own behavior’s correctness.”  

Kiminka’s early tack had Festinger’s self-centered focus: 
agents used cues from others to evaluate their own fitness. 
Subsequently his focus broadened to both a centralized agent 
that could monitor team and other agent behavior and multiple 
agents monitoring team and other-individual behaviors.  

Kaminka makes the case in his thesis for distributed 
monitoring and detection, showing that a centralized monitor 
using his algorithms does as well as can be done, whereas 
multiple monitor/detectors in socially aware agents do best, as 
they can exploit their local state. He shows that the centralized 
approach can provide either sound (no false positives) or 
complete (no false negatives) results, whereas the 

 
6 Material and background cited from this reference is available in (Suls 

and Wheeeler 2000). 
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decentralized approach provides both sound and complete 
results – meaning no incorrect detections and no missed 
detections. He also shows that this can be accomplished 
without any one agent monitoring all the agents and without 
all the agents having this monitoring capability. 

Meir Kalech joined Kaminka’s pursuits and carried the 
investigations into the issues of computational performance, 
particularly into scaling up the numbers of agents involved in 
social behavior analysis. (Kalech and Kaminka 2003) 
recognizes that “diagnosis of social failures can be expensive 
in communication and computation overhead, which previous 
work did not address,” and proposes methods for reducing the 
pattern recognition computational load by having a 
monitoring agent query other agents as to what they are doing. 
The results are noted as contrasting with prior work in that 
more centralized monitoring (fewer agents involved in the 
detection and diagnosis process) reduces the communication 
load. (Kalech and Kaminka 2005) recognizes that “current 
diagnosis techniques do not scale well with the number of 
agents, as they have high communication and computation 
complexity,” and goes on to suggest three techniques to reduce 
complexity. 

Recent work is getting even closer to the detection of 
threatening aberrant behavior. (Avrahami-Zilberbrand and 
Kaminka 2007) extends the social comparison concept into 
the detection of suspicious behavior by an agent. The general 
approach is to monitor a large group of agents and note that 
one or some agents are behaving decidedly different than 
expected. Two types of suspicious behavior recognition are 
employed: explicit and implicit. Explicit recognition classifies 
behavior as suspicious if it reflects a reference pattern known 
to be suspicious. Implicit recognition classifies behavior as 
suspicious if it does not conform to reference patterns of 
“normal” behavior. This work is part of a more general 
interest in dynamic tracking of multi-agent teams. 

Sviatoslav Braynov (Braynov 2004a, Braynov and 
Jadliwala 2004b) has investigated the use of coordination 
graphs built from filtered action data to recognize coordinated 
behaviors among multiple agents maliciously working toward 
an undesirable goal. This is done by an aberrant behavior 
detector examining forensic data, with suggestions that real-
time log-data examination might recognize a coordinated 
attack in early stages of set-up, and initiate counter action. 
This approach may be useful for identifying the agents, 
actions, and situational conditions that participate in the 
manifestation of an emergent behavior. Proactively, such 
emergent behaviors that are determined to be undesirable 
could thereafter become patterns that generate increasing 
states of concern as manifestation of the conditions increases. 

(Horling 2000) notes “Agents working under real world 
conditions may face an environment capable of changing 
rapidly from one moment to the next, either through perceived 
faults, unexpected interactions or adversarial intrusions.” 
This general statement illuminates our interest, while used by 
Horling to suggest that adaptability is necessary for detecting 
and diagnosing faults among a team of agents. Though his 

primary interest is in fault diagnosis, and repair or 
circumvention, he makes a point for detection based on 
“assumptions about agent behaviors and availability of 
resources that is the basis for effective, situation-specific 
coordination. Detection in this case involves recognizing 
when such an assumption is no longer valid.” Underscoring a 
central theme in this paper about the reality and cost of 
tradeoffs, he notes:  

“While diagnosing problems in a multi-agent setting is an 
interesting problem in its own right, it is also important to 
examine the effect of detection and diagnostic frequency 
on overall system behaviors. Specifically, one may 
wonder what the appropriate level of “aggressiveness” is 
for detection and diagnosis. On one hand, if the process 
is very sensitive, effort may be wasted monitoring 
behaviors operating normally, or adapting to faults that 
don’t exist. On the other hand, a more skeptical 
diagnostic system may ignore triggers signifying larger 
problems, or spend so much time gathering evidence and 
improving confidence that the eventual adaptation comes 
too late.”  

In summary, the cited work above has brought the concepts 
of social awareness into play with good effect for detecting 
behaviors not in keeping with team goals, agent tasks, and 
coordination plans, and work is beginning to attack 
computational scaling issues and the detection of alien activity 
among groups.  

Much of the relevant work cited above focused more on 
diagnosis than detection, where the goal is mission completion 
by repairing or circumventing the detected problems. The 
focus in this paper is only on detection, where the goal is 
safety by detecting a very broad range of behaviors that can be 
classified as unacceptable in themselves or likely to lead to 
unacceptable outcomes. These conclusions must of course 
result in some form of intervention to be effective, a subject 
beyond the scope of this paper.  

Pattern recognition of all kinds is typically dominated by 
tradeoff considerations (Dove 2009). One generally sacrifices 
accuracy for speed, or vice versa. A later section will address 
a technology that offers an approach devoid of tradeoff, 
presenting opportunities for a very different approach to the 
recognition and classification of behavior patterns, and a 
recognition platform that may be able to leverage the work 
cited here. 

III.  TRAJECTORY BEHAVIOR LEVERAGE 

Stephan Intille opened an interesting path to explore with 
his Ph.D thesis Visual Recognition of Multi-Agent Action 
(Intille 1999) and related papers. His work analyzed films of 
American football games and identified the plays being made 
according to the trajectories of the players, matching the 
offense player trajectory’s against the team’s playbook 
patterns. There is a considerable difference between idealized 
chalk-board play patterns (see Figure 3) and actual game-time 
trajectories given the unpredictability of the 11 defensive team 
players, as well as the infinite variety of trajectories the 11 
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offensive team players may take in reaction to defensive play. 
Yet he built a system that could recognize appropriate single-
agent and multi-agent actions in this domain under “noisy” 
trajectories of player and ball movements.  

(Intille 2001) is a mature digestible presentation of his work 
over approximately six years. He has focused on plan 
recognition, attempting to identify the play by classifying the 
observed actions, movements, and relationships of the players. 
He notes certain aspects of American football and the nature 
of its team interaction that shape the approach. The categories 
that follow are Intille’s, but I take responsibility for any 
interpretation mistakes: 
 Infrequent collaborative re-planning – though agents 

adjust their playing to fit the real-time situation, the 
intended play coordinates the general action. 

 Agent based goal description – each agent has a goal 
(e.g., catch pass, block, receive handoff, etc) for any 
given play. The system attempts to identify the goals 
agents are pursuing based on spatial and temporal 
relationships of agents and their trajectories. 

 Existing taxonomies – a common, fairly universal 
terminology exists among coaches and fans for 
describing all low-level agent actions (e.g., blocking, 
running through a hole) and higher level aggregated 
actions (e.g., executing a specific play) – within the 
boundaries of game constraints and experience. This 
forms a succinct and closed domain language. Figure 3 
shows some of that common terminology and the 
nature of its reference. 

 Purposeful behavior – every agent is expected to 
contribute to the play’s objective, nothing happens 
without a reason. 

 No statistical databases – large statistical databases 
describing much of what has transpired in football 
action do not exist. A recognition algorithm cannot be 
based on that type of resource. Instead, a linguistic 
description of plays is provided by a domain expert 
(coach).  

 Structured but uncertain – each offensive play begins as 
a highly structured coordination plan. The defensive 
agents rarely cooperate, so a great deal of variation 
exists in individual agent movements, individual agent 

goal achievement, and overall trajectory maps. 
This model has potential for describing joint UAS 

maneuver patterns and detecting when an agent is not 
contributing as expected. Though a great deal of latitude is 
expected in the execution of a maneuver pattern, general 
characteristics should prevail and indicate individual UAS not 
working on team behalf. Judgment of cause and severity for 
out-of-scope behavior is a separate issue. 

There is other related work that warrants attention as well. 
For instance, Tucker Balch, who did a doctoral thesis on 
behavior diversity among teams of UAS under Ronald Arkin 
at Georgia Institute of Technology, has returned to Georgia 
Tech after some intriguing work at Carnegie Mellon tracking 
trajectories of ant behavior (Balch 2001). 

IV. DETECTION COMPLEXITY LEVERAGE 

Progress in pattern recognition has come in the form of 
trying harder: more elaborate recognition algorithms, pattern-
tuned special purpose processors, multi-core processors and 
clustered servers, multiple graphic processors and massively 
parallel supercomputers. All of these approaches continue to 
make tradeoffs among the same forces in tension: accuracy, 
time, and cost. 

Biological capability is the benchmark for pattern 
recognition. Machines, like people, cannot recognize 
situations of which they have no prior knowledge. A healthy 
person over a lifetime builds up a wealth of experience 
patterns, stored in memory, and adds variations as repeated 
exposure reveals new levels of nuance. How biological 
entities achieve this remains as conjecture, but it is clear that 
patterns are developed, retained, and applied in the necessary 
and constant sense making of everyday life.  

Gary Klein (Klein 1998) suggests his Recognition Primed 
Decision (RPD) model to explain how humans make decisions 
without apparent deliberation or reasoning. Well known for 
his studies of professional firefighters making appropriate 
choices for situation response almost immediately, he 
describes the RPD model as one that uses intuition (pattern 
recognition) to qualify the fist viable action, without 
conscious weighing and decision making.  

Research indicates that human expertise (extreme domain 
specific sense-making) is primarily a matter of meaningful 
pattern quantity – not better genes. According to an interview 
with Nobel Prize winner Herb Simon (Ross 1998), people 
considered truly expert in a domain (e.g. chess masters, 
medical diagnosticians) are thought unable to achieve that 
level until they’ve accumulated some 200,000 to a million 
meaningful patterns, requiring some 20,000 hours of 
purposeful focused pattern development. The accuracy of their 
sense making is a function of the breadth and depth of their 
pattern catalog. Interestingly, in biological entities, the 
accumulation of large expert-level pattern quantities does not 
manifest as slower recognition time. All patterns seem to be 
considered simultaneously for decisive action. There is no 
search and evaluation activity evident.   

Fig. 3: From (Intille 1999) – The different types of pass patterns that receivers 
can run constrained by the rules and nature of the game. 
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On the contrary, automated 
systems, regardless of how they 
obtain and represent learned 
reference patterns, execute time-
consuming sequential steps to sort 
through pattern libraries and perform 
statistical feature mathematics. This 
is the nature of the computing 
mechanisms and recognition 
algorithms employed in this service. 

Philip Ross (Ross 2006) talks 
about the expert mind, and Herb 
Simon’s “chunking” explanation for 
how chess masters can manage and 
manipulate a vast storehouse of 
patterns. Ross ties this chunking 
discussion into the common 
understanding that the human mind 
seems limited by seven plus-or-minus 
two elements in working memory: 
“By packing hierarchies of 
information into chunks, Simon argued, chess masters could 
get around this limitation, because by using this method, they 
could access five to nine chunks rather than the same number 
of smaller details.”  

Psychologist George Miller wrote “The Magical Number 
Seven Plus or Minus 2” (Miller 1956) that provided the 
underpinning for Simon’s suggestion. Miller’s paper is a great 
and rare reading pleasure as well as a rich storehouse of 
information, far beyond the simple seven-digit limitation 
common reference has reduced it to. Importantly, Miller’s 
concept of chunking into hierarchical levels of patterns-of-
patterns appears highly relevant in attempting to build 
recognition algorithms that might exhibit capabilities seen in 
humans. Nelson Cowan (Cowan 2001) subsequently carries 
this study of chunks and limits further, and makes a case for 
the number 4 plus-or-minus 1, as a more likely limit.  

A similar chunked-hierarchy architecture is reported by 
Researchers at MIT (Serre, Oliva, Poggio 2007). Serre’s 
doctoral dissertation “describes a quantitative model that 
accounts for the circuits and computations of the feedforward 
path of the ventral stream of visual cortex,” and is likely “the 
first time that a neurobiological model faithful to the 
physiology and the anatomy of visual cortex ... achieves 
performance close to that of humans in a categorization task 
involving complex natural images (Serre 2006).” Though 
Serre’s work is focused on image recognition, it is 
inspirational in it’s fit with the platform developed in this 
paper, and will surely guide subsequent steps in this 
investigation. 

 This section will close by noting a tie to the previous 
section’s discussion of trajectory behavior recognition. Wayne 
Gretsky is renown for his field sense (Kahn 2007), knowing 
where his team mates are without looking, and knowing where 
the puck will be next. Though what sensory mechanisms are 
involved may be illusive for now, this is expert pattern 

recognition involving the trajectories of bodies and objects in 
motion, rather than static chess board configurations or 
medical diagnostic symptoms. Intille’s football-play 
recognition discussed earlier did not have the vast quantity of 
patterns associated with expertise, nor did it have to respond 
in real-time; but it can offer initial guidance on how an 
artificial mechanism might represent trajectory patterns.  

V. TECHNOLOGY LEVERAGE 

Automated recognition of patterns in data is constrained by 
trade-offs among speed, cost, and accuracy. A new VLSI 
processor architecture decouples the speed/accuracy tradeoff, 
and renders the cost/accuracy tradeoff negligible, enabling 
new performance and new applications (Dove 2009). The 
architecture features massively-parallel, dynamically-
configurable finite-state-machines which simultaneously 
process the same data stream. Low cost VLSI fabrication, 
unbounded scalability, and high-speed constant-rate 
throughput independent of pattern number and complexity 
break current trade space constraints. 

This decoupling of the speed/accuracy tradeoff constraints 
enables new possibilities for employing pattern recognition. In 
particular, the massive quantity of simple patterns associated 
with expertise performance can be investigated as an 
alternative to time consuming accuracy-compromising 
computational heuristics. In one sense it sounds like a brute 
force approach: enumerating all possible patterns of interest, 
rather then developing an elegant algorithm. On the other 
hand, the biological benchmark appears to use this massive-
pattern-quantity approach, while “elegant” approaches are 
made necessary by the nature of the computational 
mechanisms employed, not the problem in need of a solution, 
and they extract a cost in both accuracy and time that can be 
avoided. 

The processor architecture and how it eliminates these 

 
Fig. 4: Reconfigurable pattern processor – with massively parallel pattern detection. 
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tradeoffs is explained in (Dove 2009). That paper describes 
those aspects of the architecture that sever the linkages 
between the time it takes to recognize (classify) a pattern and 
the number and complexity of the patterns that are 
recognizable. At this Q4 2008 writing a granted patent exists 
(Harris and Ring 2008), an emulator and pattern compiler are 
in use since Q4 2005 (Kennen 2008a), FPGA prototype 
boards and an SDK are in use since Q1 2008 (Kennen 2008b), 
and VLSI product design is in progress. More will not be said 
of these here, as the intent is to focus on how this processor 
might be leveraged in behavior detection for security and 
safety of multi-agent systems. 

Some understanding of the processor architecture is 
necessary. Referring to Figure 4, a partial view of the 
architectural concept shows massively replicated detection 
cells. A half million such cells on a single VLSI chip is a 
reasonable and appropriate expectation for first generation 
product. These cells are independent units, with three 
dynamically configurable elements to consider here: a 1-bit 
activation status register, a 256-bit sensitivity vector, and a 
satisfaction line that can be crossbar-set to activate an 
arbitrary number of other cells.  

In operation (Figure 5), an external controller feeds data 
stream bytes in sequence to a current-byte register in the 
processor. The presentation of each new byte triggers the 
beginning of a detection cycle. The current byte acts as an 
index into the sensitivity vector for each and every cell 
simultaneously. If a cell status is active and the indexed 
location in its 256-bit sensitivity vector is set (on), that cell’s 
satisfaction line will set the activation status of all other cells 
that are crossbar connected to it. These other cells will then be 
active when the next byte is presented. A cell’s satisfaction 
line can also reactivate the cell itself, or let itself go inactive. 

Note that any number of a cell’s 
256 sensitivity bits may be set in the 
on condition, so the cell can 
respond to any number of data-
stream byte values. The higher level 
aggregation logic depicted in Figure 
5 is not a subject for this paper 
other than for the down-counter 
employment discussion later. The 
reader is referred to (Kennen 2007) 
for Theory of Operation detail. 

Important to note, multiple 
processors can be employed in 
parallel and serial arrangements to 
increase throughput speed and/or 
reference-pattern capacity. 
Interleaving packet-based data 
streams across multiple processors 
can be used to increase throughput 
speed. Presenting the data stream 
“current” character to multiple 
processors simultaneously can be 
used for unbounded reference-
pattern scalability.  

With this architecture, a group of detection cells can be 
configured into finite state machines (FSMs) by setting related 
activation cross points on satisfaction lines. Any number of 
such FSMs may be configured within the total cells available. 
Typically such FSMs would be created to classify (detect) 
specific patterns or sub-patterns. No matter how many related 
or independent FSMs might be configured, all active FSM are 
driven simultaneously in parallel by data stream byte 
presentation. In this way an unbounded number of reference 
patterns can be in detection mode simultaneously with no 
impact on speed of detection. The reader is referred to (Dove 
2009) for an explanation of how traditionally limiting 
tradeoffs among accuracy, complexity, capacity, and speed 
have been eliminated, and cost tradeoffs reduced to a 
negligible factor. 

Though this processor can play a useful role in support of 
many current recognition algorithms, its real potential is 
delivered when recognition problems are reformulated for 
parallel processing. The next section will provide some simple 
examples that could be useful in aberrant behavior detection 
methods for the concepts presented earlier. 

VI. CLASSIFICATION TECHNIQUES 

Pattern recognition has two distinct approaches, and a third 
that blends the two. For a full treatment see (Jain et al 2000). 
 Statistical Approach—In this approach an unknown entity 

or situation is characterized by a set number of features 
and measured values for each feature (a person 
characterized by height and weight; a danger 
characterized by velocity, distance, and heading). 
Mathematically the features become dimensions in a 

 
Fig. 5: Processor architecture – nominal values for line counts, down-counters, cell-block size, and total cells 
(Kennen 2007). 
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multidimensional space, and the values for each of those 
features then places an unknown entity or situation at a 
point in that multidimensional space. Regions of the 
space are associated probabilistically with pattern 
classification (man or woman; dangerous or suspicious or 
benign). 

 Syntactic Approach—This approach is structural in 
nature and generally hierarchical, where patterns are 
composed of subpatterns, which are in turn composed of 
subpatterns, with the lowest level subpatterns being 
simple recognizable primitives. In syntactic pattern 
recognition, a formal analogy can be drawn between the 
structure of patterns and the syntax of a language. 
Language parsing is a common usage for this approach, 
but other patterns including waveforms and images like 
those of the football plays seen earlier, which can be 
constructed from primitive structural components, lend 
themselves to syntactic recognition. Syntactic patterns are 
composed of primitives that follow rules about how they 
may be combined in relation to each other. Using the 
common linguistic metaphor, these rules form a grammar 
of allowable pattern structures. 

 Augmented Grammars—This approach combines the two 
above, which may be done in a variety of ways to suit the 
raw sensor data, the computational resources being 
employed, the difficulty of feature extraction, and the 
speed vs. accuracy tradeoffs dictated by the application. 
In a general sense, augmented grammars have syntactic 
elements and semantic elements, mixing structural 
relationships and feature values. 

The processor described here is well suited to the syntactic 
approach, appears highly promising for augmented grammar 
approaches, and has utility for some statistical approaches. 

It is not the intention here to explore the many ways and the 
limits of the processor’s applicability to recognition problems. 
A separate project is developing examples of parallel 

algorithms for classification techniques in domain specific 
applications (Kennen 2008c). A few general basic techniques 
will be shown here to give some idea for how detection cells 
can be organized as FSMs, and how such FSMs can be 
organized to discriminate syntactic structure, feature values, 
and pattern groupings.  

Feature Value Discrimination 

One likely classification of undesirable behavior might be a 
UAS that is not where it is expected to be. Perhaps it has 
developed a mobility malfunction, missed a cue signaling a 
new task, been incapacitated by the enemy, or redirected by an 
unauthorized command. If a team of UAS is coordinated in 
accordance with a specific plan, like the football plays seen 
earlier, each unit is expected to maneuver within some 
absolute or relative location envelope. This envelope may be 
narrow during travel to a target area, larger during 
engagement, and different among some members of the team 
when sub-groups are deployed on separate tasks. The example 
in Figure 6 shows two ways to encode the location of a UAS 
by three GPS coordinates: latitude, longitude, and altitude. 
The absolute case can detect a UAS that wanders outside of its 
expected travel envelope for a given leg of a journey. The 
relative scale might be in relationship to a monitoring team-
member during some phase or task of planned teamwork.  

Figure 7 then shows how the location envelope for two 
different tasks assigned to the same UAS at different times 
during a mission might be configured. Imagine thousands or 
tens of thousands of such reference patterns all prepared to 
classify incoming data as acceptable or not, all localized to 
specific UAS. The example FSM could be expanded to 
include additional behavior data for a specific UAS in a 
specific task, or separate FSMs could handle separate 
behaviors and be associated appropriately with data-stream 
packet headers.  

A final technique example is offered to indicate one of the 

 
Fig. 6: Some possible ways of encoding an envelope of acceptable values for 
latitude, longitude, and altitude. Multiple detection cells and data-stream bytes 
could be used for each. Minimum separation ensures two UAS do not get 
dangerously close. A detection cell only has one satisfaction line, so the FSM 
on the right must satisfy on failure with the compliment of the permissible 
range. The final cell matches on anything and signals success. 

 

Fig. 7: This example employs a packet approach to data stream packaging. 
Packets here have a two-part header: the first two cells/bytes signify the 
UAS associated with the data, and the second two signify the task that this 
UAS is currently supposed to be executing. Detection of the header 
activates the correct positioning envelop for that UAS on that task. Two 
FSMs are shown for the same UAS on two different tasks 49 and 50. 
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ways this processor could be used to weight different features 
or subpatterns within a total pattern. Figure 8 depicts some of 
the higher level aggregation and output capabilities of the 
processor conceptually. In this example the down counters are 
employed to give different weights to different features of a 
pattern. A down counter can be initialized to some value when 
a configuration load is sent to the processor. Crossbar 
configuration associates specific down counters with specific 
FSM satisfaction lines. Figure 8 depicts four possible 
classifications for a large number of features, where one of 
those features carries a weight of 2, another carries a weight of 
three, and the rest carry weights of 1. 

The examples shown are all simplistic and not indicative of 
the range of possibilities. They were chosen to show some 
specific techniques that broaden the purely syntactic 
applications readily associated with this reconfigurable 
replicated detection cell architecture. 

VII. SUMMARY 

The leverage discussions in previous sections are 
complimentary, each having a potential role in a solution 
platform. The starting point was the behavior pattern in certain 
biological systems that monitor and enforce peer behavior. 
The end point was employment of the displayed processor 
architecture to address peer safety and security monitoring 
among UAS under test or on mission – under the belief that 
this is a difficult problem to address effectively if undertaken 
by traditional computational resources and methods.  

The work reported here attempted to find sufficient 
connective concepts between the two end points that would 
warrant a next stage investigation. It is not suggested that the 
connecting leverage points discussed here are the only way to 

approach the problem 
effectively, nor that they are 
completely sufficient, but rather 
that they appear promising as a 
foundation for a solution path 
worth exploring. 

I believe that the future of 
UAS is pervasive employment 
in human society, regardless of 
purpose, warfighting or 
otherwise. Such “things” will 
need socialized, as is said of 
unruly children. Simple 
behavior safe-guards will not be 
sufficient. Right or wrong, 
ready or not, we will expect 
these things to exhibit respect 
for life and property, ethics, self 
control, and peer-policing 
capabilities approaching our 
own. To the extent that they 
don’t, we will object to their 
presence. 

This is preliminary work that 
sought and constructed a basis from which to investigate 
algorithms that can detect safety threatening behavior among 
UAS working in teams; where speed, accuracy and breadth of 
comprehension are key performance factors. The work 
suggests that a promising basis exists in combining 
recognition of social behavior and trajectory behavior with a 
technology that can manage a vast quantity of stored reference 
patterns structured and accessed in a feedforward chunked 
hierarchy. Importantly, that technology must employ parallel 
recognition capabilities that eliminate any need for time 
consuming search or sequential algorithms.  

Social comparison theory guides us to a comparison of an 
agent’s behavior pattern against behaviors of others on the 
team, against mission plans, against known normal behavior, 
and against known aberrant behavior. Trajectory behavior 
classification could be considered a special subset of social 
behavior detection. 

Expertise theory, if I can call it that, guides us to a need for 
an extremely large number of reference patters that can be 
simultaneously compared relative to a dynamic situation, 
eliminating time for sequential evaluation and reasoning steps, 
and eliminating much of the otherwise selective monitoring 
and pattern simplification that increases uncertainty. 

Some key needed capabilities are present in the candidate 
processor architecture: 
 Unbounded capacity for patterns to accommodate 

unbounded UAS learning. 
 Reconfigurable pattern representations as learning 

occurs. 
 Classification (decision) speed independent of pattern 

quantity and complexity. 

 
Fig. 8: This conceptual depiction of the processor’s architecture at the top places the FSMs and their association with 
down counters in context. The bottom depiction shows a large number of multi-element features which are used to 
determine a classification. Classification-1, for instance, may have its down counter initialized to 3, while 
Classification-4 may have its down counter initialized to 4. Thus, Classification 4 can occur in multiple ways, 
whereas Classification-1must have one each of the three specifically designated features.   
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VIII. CONCLUDING REMARKS 

I have discussed mainly from the point of view of a social 
behavior detection mechanism installed in many or all of the 
UAS working together on a mission. In a test environment, 
especially in early years as well as later with the presence of 
legacy units, such mechanisms are not likely to be present on-
board. The physical location of these mechanisms is not 
necessarily important, provided suitable sensor data is 
available.  

Under testing conditions the testing arena is likely bounded 
and populated with various observer installations and mobile 
facilities. Suitable sensors located in these facilities, and 
perhaps sent from transmitters on-board UAS, can provide the 
raw data feeds. As was shown by (Kaminka 2000a), it is not 
necessary to have a one-to-one ratio of monitors to agents in 
order to ensure high detection accuracy. Thus, multiple such 
mechanisms might be located in testing and observation 
facilities in suitable proximity to the testing arena. 
Alternatively, special units could be deployed among the UAS 
under test much as we employ referees on the field in 
American football. 

In the end, such mechanisms also belong on board as an 
integral part of every UAS, as UAS will operate outside of 
ready observation and are subject to attrition by enemy 
destruction. In such live cases aberrant behavior must be 
detected and evaluated to sense control penetration by the 
enemy as well as malfunction that threatens the mission or 
might provide a disabled UAS to the enemy for recovery post-
mission. 

This concept of a socially aware team of autonomous agents 
has application well outside the UAS and UAST focus of this 
paper. For instance, socially aware security agents can be 
employed as a community watch among groups of computers 
on a network. Perhaps a group of three to ten all keeping 
watch on each other to make sure one is not breeched. How a 
breech of one would be detected if nothing overt commences 
is not apparent.  

Intrusion detection has autonomous agent-based approaches 
that are overlapping the autonomous agent team coordination 
space. For instance, (Braynov 2004a) is investigating ways in 
which coordination graphs can be employed in the recognition 
of coordinated attacks by groups of autonomous agents 
working toward a common goal. The platform developed here 
for UAST can merge with Braynov’s work and pursue 
application in intrusion detection areas, and might be 
especially useful in broadening the approaches used in cross-
log-file forensic and real-time analysis already in the market. 

Important next steps must investigate pattern 
representations suitable for the suggested processor and the 
behaviors and expertise leverage points. The work of two 
researchers came to light too late to be featured stronger as 
platform foundations in this paper: Ronald Arkin at Georgia 
Tech has an extensive body of work with his students dealing 
with relevant aspects of multi-agent systems, and Thomas 
Serre has both pulled together the work of others and 

advanced relevant understandings of human visual cortex 
recognition processing. Serre’s work in feedforward chunked-
hierarchies is especially intriguing, and might be modeled 
with multiple processors cascading outputs to inputs, or even 
time sharing a single processor if time and pattern capacity 
permit.  
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