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Abstract―Security strategies and techniques are falling 
behind the agile pace of adversarial innovative capabilities. A 
project is underway that has identified six so-called SAREPH 
characteristics of adversarial self-organizing agility, and is 
now cataloging patterns toward a pattern language of self-
organizing security techniques that can be employed for equal 
or superior security agility. Many such patterns have recently 
been developed. This paper adds the Genetic Algorithm (GA) 
to the catalog. The essence of a GA is to express the problem 
to be optimized in terms of a “fitness function” that evaluates 
how well candidates optimize the solution. In natural evolution 
fitness is an organism’s ability to survive and reproduce. 
Computing applications abstract fitness to match the problem 
at hand, such as an Intrusion Detection System attempting to 
correlate seemingly unrelated events that collectively 
constitute a threat. Reviewed first are the pattern project and 
the general nature of the GA. A reusable generic pattern 
description is developed. How the pattern conforms to the 
SAREPH characteristics is shown. Then three examples from 
the literature show how the pattern is employed in SAREPH 
conformity: predator-prey behavior evolution in robot swarms, 
future behavior prediction in financially traded stocks, and 
attack detection in an Intrusion Detection System.  

 
Index Terms―Intrusion detection, SAREPH. 
 

I. INTRODUCTION 
 
Self-organizing agile security appears to be a necessary 

and new strategy to gain at least parity with the agility and 
self-organization exhibited by the constant innovation and 
evolution of adversarial communities. 

The SDOE 683 graduate course on self-organizing agile 
systems at Stevens Institute of Technology is identifying and 
cataloging patterns for self-organizing agile security [1]. The 
International Council on Systems Engineering (INCOSE) 
Systems Security Engineering Working Group expects to 
publish a catalog of refined and consistent patterns as an 
INCOSE product when a sufficient number of patterns are 
developed. The project is currently in a preliminary pattern 
discovery phase, with minor changes in pattern representation 
consistency and pattern qualifications both converging toward 
a stable state. 

The purpose of identifying these patterns is to accelerate 
the adoption of this new strategy, and to do so by developing 
a relevant common pattern language for systems engineers 

and security engineers to discuss and understand the 
essential characteristics. 

The pattern project identified six common characteristics of 
agile security systems, modeled on the advantageous agile-
practice characteristics observed in the security adversarial 
communities. These six characteristics are referred to as 
SAREPH, as summarized in Table I. 

TABLE I 
PATTERN QUALIFICATION SAREPH FILTERS 

 
Table II shows the format that the pattern project is using to 

capture and display essential pattern features. Each 
candidate pattern is described in this structure. References 
are provided in the pattern structure to facilitate deeper study 
of pattern employment examples in a variety of domains, 
where pattern-employment nuance under different situations 
broadens the understanding. 

TABLE II 
PATTERN DESCRIPTION FORMAT 

 
Pattern projects generally assemble commonly used 

patterns that have been employed within a single domain, 
such as construction architecture [2] or traditional-security 
patterns [3]. Self-organizing cyber and physical security 

[S] Self-organizing – with humans embedded in the loop, 
or with systemic mechanisms. 

[A] Adapting to unpredictable situations – with 
reconfigurable, readily employed resources. 

[R] Reactively resilient – able to continue, perhaps with 
reduced functionality, while recovering. 

[E] Evolving with a changing environment – driven by 
situation and fitness evaluation. 

[P] Proactively innovative – acting preemptively, 
perhaps unpredictably, to gain advantage. 

[H] Harmonious with system purpose – aiding rather than 
degrading system/user productivity. 

Name: Descriptive name for the pattern. 
Context: Situation that the pattern applies to. 
Problem: Description of the problem. 
Forces: Tradeoffs, value contradictions, key dynamics of 
tension and balance, constraints. 
Solution: Description of the solution. 
Graphic: A depiction of response dynamics. 
Agility: Qualifying SAREPH characteristics. 
Examples: Referenced cases of pattern employment. 
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doesn’t have an historical record from which patterns can be 
drawn; so at this stage the pattern project is drawing upon a 
variety of domains where appropriate patterns can be found, 
most frequently in natural systems, where sustainable security 
is a fundamental and primary objective.  

Consequently, non-cyber/physical security domain 
examples are necessarily used to provide pattern base-lines, 
examples, and application nuance. 

The working theory for the pattern project requires that 
pattern candidates include at least four of the SAREPH 
characteristics as follows: 

• The pattern exhibits both Self-organizing and 
Harmonious characteristics. 

• The pattern exhibits either or both of the Evolving 
and Adapting characteristics. 

• The pattern exhibits either or both of the Proactive 
and Reactive characteristics. 

Evolution in natural systems occurs through successive 
generations, and the genetic algorithm typically employs this 
concept. In artificial systems the concept of successive 
generations may become blurred at times, when a system 
maintains identity but adapts or improves certain aspects of its 
functionality through experimentation and selection that may 
employ a genetic algorithm. In this later case the pattern 
project wants to clearly distinguish between evolution and 
adaptation; though at this early stage some confusion may be 
evident in some pattern descriptions previously published. 

This paper presents a basic genetic algorithm as a 
candidate pattern for the self-organizing agile security pattern 
project. 

 
II. GENETIC ALGORITHM INTRODUCTION 

 
Life on earth has a breathtaking diversity, thriving in 

innumerable niches. Natural selection (survival of the fittest) 
and variety arising from reproduction mechanisms has 
evolved organisms and their life sustaining processes suitable 
to diverse niches. In computer science, a genetic algorithm 
(GA) is an abstracted computational model of the underlying 
mechanism of natural evolution, typically applied to learning, 
searching, and optimization problems.  

The genetic algorithm methods described here are based 
on techniques initially developed by John Holland and his 
students and colleagues at the University of Michigan in the 
1960’s and 1970’s, popularized by the publishing of his 
landmark text on the subject [4]. Since that time the GA has 
been a widely-used algorithm to address problems in 
optimization and in modeling artificial life [5].  

The essence of a genetic algorithm is to express the 
solution to an optimization problem in terms of a “fitness 
function” that evaluates how well candidate solutions address 
the problem. In natural evolution, fitness is the organism’s 
ability to survive and reproduce. Computing applications, on 
the other hand, abstract fitness to match the problem at hand. 
In robotics, for example, fitness may represent a robot’s ability 
to navigate successfully. In keeping with the evolutionary 
metaphor, the candidate solutions are called “individuals,” the 
encoding of each candidate solution is called its 
“chromosome”, and each distinct element within a 
chromosome is called a “gene”.  

A common computational representation of a chromosome 
is a bit string or a string of integers for simplicity of 

manipulation; but many variant representations are possible. 
With this structure in place, the GA applies “operators” based 
on natural evolution to evolve an initial randomly-generated 
(un-fit) population of individuals into more fit individuals, until a 
suitably fit individual emerges. The GA creates new 
generations of individuals from previous generations, evolving 
their chromosomes until a time limit is reached or until 
sufficient fitness is achieved. 

The choice of chromosome representation may make the 
difference between a successful GA and a failure. For 
example, Forrest and Mitchell [6] discuss chromosome 
encoding schemes whose properties inhibit the GA from 
reaching higher-order solutions due to the combinatorial 
relationship between genes in the chromosomal 
representation and the corresponding features of the best 
solution. 

To create a new generation, the GA evaluates the fitness of 
the individuals in the current generation using the fitness 
function, and then selects the fittest individuals stochastically, 
i.e., with some randomization. The fittest individuals are 
selected to breed new individuals for the next generation with 
the GA crossover operator, which mimics sexual reproduction 
in nature – two individuals are selected to breed, and their 
children’s chromosomes are created by swapping a portion 
from each parents’ chromosome at a randomly-selected 
location. Other moderately fit individuals in the current 
generation are allowed to survive to the next generation, and 
the least fit individuals are replaced by the new products of 
crossover to maintain the overall population size. The other 
commonly applied GA operator is mutation – occasionally, a 
random gene (bit or string of bits) of a chromosome is 
changed for the next generation.  

There is a third GA transform operator modeled on natural 
evolution called inversion, which randomly reverses the order 
of a group of genes in the chromosome – a bulk form of 
mutation effective and efficient for certain problem types. 
Mitchell and Forrest noted in a seminal 1994 paper [5] that 
“Inversion is rarely used in today's GAs, at least partially 
because of the implementation expense for most 
representations.” That implementation expense may not be 
the factor today it was then; but as crossover and mutation 
are able to evolve the same chromosomal outcomes, the 
Basic Genetic Algorithm pattern described in this paper 
includes only the selection operator and the crossover and 
mutation transform operators, recognizing them as minimally 
necessary. 

For the interested reader, there are many variations and 
additional operators for GAs described by Aga in [7]; but the 
essential features are chromosomal encoding of multiple 
distinct individuals, repetitive selection of the fittest individuals 
over multiple generations, and stochastic application of 
transformation operators to create new generations. 

The inherent randomness of the selection, crossover, and 
mutation operators allows a GA to explore the “fitness 
landscape” to find novel solutions. Introducing random 
changes to the current best solutions is a trade-off between 
exploration of new territory in the fitness landscape and 
exploitation of the currently-known best solutions (local 
optima). The mutation operator is applied much less often 
than crossover, but importantly helps the GA avoid getting 
stuck at local optima. 
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GAs explore many independent hypotheses in parallel at 
the same time; and are well suited to problems where the 
fitness landscape is complex and not well structured. Given a 
suitable problem, GAs converge relatively quickly on good 
solutions, but may not converge on the absolute optimal 
solution – resembling biological natural selection. 

For more on the subject, a commonly cited book is Melanie 
Mitchell’s Introduction to Genetic Algorithms [8], and John 

Holland has a very readable Scientific American [9] 
introduction to genetic algorithms available on the web. 

 
III. GENETIC ALGORITHM PATTERN 

 
Table III describes the basic genetic algorithm as a 

candidate pattern. Note that there are many ways to embellish 
this algorithm in detail implementations not addressed here. 

TABLE III 
BASIC GENETIC ALGORITHM PATTERN 

Name: Basic Genetic Algorithm (with selection, crossover, and mutation operators) 
Context: A system or process faced with a multi-dimensional problem that requires systemic learning or searching to find an 
optimal solution. 
Problem: Multiple or complex trade-offs for optimization; lack of a priori understanding of how to solve a problem; 
environment may vary over time; hill-climbing or other optimization algorithms get stuck at local optima. 
Forces: Exploration vs. exploitation; computationally-intensive vs. approximate fitness function; rate of crossover vs. 
mutation; rapid convergence vs. more trials. 
Solution: Express the problem domain with a genetic representation amenable to crossover and mutation operators. 
Develop a function to evaluate the fitness of individuals at each generation. Choose the initial generation of individuals, 
randomly or by seeding. Create successive generations by selecting the fittest individuals in the current generation by 
applying the fitness function with some random variation, and then randomly applying genetic operators (crossover of 
chromosomes from two individuals, random mutation of a chromosome, possibly others) on these fit individuals to create 
uniquely-new individuals for the next generation, with higher average fitness than the previous generation. 

 
Genetic Algorithm Evolution: Best fitness evaluations–keep all; midrange fitness evaluations–keep some, mutate others; worst 

fitness evaluation–replace with crossover mix of best fitness evaluations. 
[S]elf organization occurs as iterative chromosome experimentation searches for optimal chromosome configurations that 

satisfy the fitness landscape. 
[A]daptation occurs within the GA pattern when it accommodates additional or replaced factors in the fitness evaluation 

required by a change in the environment. 
[R]eactive resilience is exhibited when unfit or low-fit chromosomes are identified and replaced by new alternatives, and with 

continued fitness evaluations after convergence on an optimal set in case a changing environment reduces the fitness of 
the converged set. 

[E]volution occurs as a stable fitness function converges on the discovery of a solution with optimal fitness. 
[P]roactive innovation occurs by breeding uniquely-new speculative individuals at each generation using the genetic 

operators of selection, crossover and mutation. 
[H]armony between generations is maintained when the majority of good-fit individuals are preserved from the previous 

generation, minimizing the effects of new-chromosome experimentation. 
Example – Natural evolution – variations in next generation created by crossover (sexual reproduction) and mutation of 

chromosomes in fit individuals (i.e., those that survive to breed) [4, 9]. 
Example – Robotics – GA that trains neural networks for collision-free navigation, homing, predator-prey co-evolution, joint 

evolution of brains and body morphology, and evolution of cooperation and altruism [10]. 
Example – Financial forecasting – genetic algorithm to predict the performance of publically traded stocks [11]. 
Example – Cyber security – Intrusion Detection System (IDS) using a genetic algorithm [12]. 
Example – Cyber security – Genetic algorithm used for network intrusion detection [13]. 
Example – Cyber security –Attack detection using a genetic algorithm in a policy based network [14]. 
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Three examples from the literature in diverse domains are 
discussed next. Each example is characterized with respect to 
the SAREPH principles described in Table I.  

 
IV. ROBOT BEHAVIOR EVOLUTION 

 
Floreano, in a fascinating and revealing report [10], 

employed GAs to evolve neural networks that control simple 
robots. These small wheeled robots learned collision-free 
navigation and homing, cooperation and altruism behaviors, 
and continuous cycle predator-prey co-evolution. For a deeper 
treatment of GAs combined with artificial neural networks see 
[15]. 

In all cases a simple neural net controlled a robot’s wheel 
speed and direction as output, with input from eight object 
distance sensors. In some cases additional sensors were 

employed, such as one for detecting the robot’s recharging 
“home” for the homing test, and sensors on “prey” that could 
distinguish a “predator”, and vice versa. The fitness function 
for the different cases was set for the experimental task. 

Neural net connections have relevance weights, from zero 
for no connection to something with positive or negative 
significance. A robot’s GA evolves chromosomes that 
designate these weights, through successive generations of 
robot “life” in a fixed population of robots. At the completion of 
each generation’s life span, the GA stochastically selects 
chromosomes with promise to create the next generation of 
robotic neural net weights. Fig. 1, reprinted from [10], depicts 
the GA’s neural-net-weighting evolutionary cycle. Only 
crossover and mutation chromosome-transformation 
operators were employed. 

 

 
Fig. 1 – (as depicted and captioned in [10]) Major steps of Darwinian selection with robots. 1) The robots have a neural network with the 
strength of connections between neurons determining their behaviour as a function of the information provided by the environment. 2) The 
fitness f of each robot (i.e., the performance in the task assigned to them) is measured in the experimental setting using real robots or physics-
based simulators. 3) The genomes of robots with highest fitness are selected to form a new generation. 4) The selected genomes are paired to 
perform crossover and mutations. 5) The new genomes are used to perform a new round of selection in the next generation.  

 
Robots with different chromosomes behave differently, 

affecting their fitness. Fitness may be defined as how fast and 
straight a robot moves and how often it avoids obstacles; or in 
the case of predator-pray experiments, how successful prey is 
at avoiding contact with predator, and how successful 
predator is at catching prey, within a time limit. 

Typically robots from a population of 80-100 were 
employed with different initial chromosome weight-genes. 
Trials within a generation were done two robots at a time, 
within a small walled perimeter containing additional obstacles 
for some test cases. 

Floreano notes: “In all cases, robots initially exhibited 
completely uncoordinated behaviour because their genomes 
had random values. However, a few hundreds of generations 
of random mutations and selective reproduction were 
sufficient to promote the evolution of efficient behaviours in a 
wide range of environmental conditions. The ability of robots 
to orientate, escape predators, and even cooperate is 
particularly remarkable given that they had deliberately simple 

genotypes directly mapped into the connection weights of 
neural networks comprising only a few dozen neurons.” 

 Notably, Floreano discusses the shortcomings of 
generation trials in simulation vs. those carried out in the “real 
world” – in this case meaning actual robots navigating within 
the experimental perimeter. Real-word evolution discovers 
idiosyncratic environmental factors of value that are typically 
missing in simulation models. Nevertheless, many of the trials 
employed simulations initially to speed up early convergence 
and then finished with a series of real-world trials for final 
chromosome evolution. 

 This example of GA employment exhibits all six of the 
SAREPH characteristics, as described next. 

Self-organizing – Each new generation of robotic control is 
systemically re-designed by using the crossover and mutation 
operators on the chromosomes from the fittest robots of 
previous generation. The fittest behaviors are selected as 
those that achieve the highest measured ability to achieve the 



5 
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012. Corrections made 2Aug2012 

task at hand. Behavior trait convergence is self-organizing 
without external decision-making. 

Adapting to unpredictable situations – The predator-
prey case is a good example of adaptation to a changing 
environment. As prey became more adept at avoiding 
predation, the predators adapted to their own less-fit condition 
and evolved new successful strategies, which in turn caused 
the prey to adapt by evolving new avoidance strategies. The 
basic GA implementation remained the same, converging on 
new chromosome sets appropriate to the environmental 
change. 

Reactively resilient – The GA generates new 
chromosomes with crossover and mutation operators rather 
than wholesale random replacement. This has the effect of 
maintaining some prior history in new chromosomes, which 
lends resilience when chromosome changes are less fit in a 
new generation than in a prior generation. In the predator/prey 
task, the predators react to the behavior of the prey, and 
evolve a new approach to predation that increases their 
fitness, thereby lowering the relative fitness of the prey. This 
causes the prey to evolve new behavior to counteract the 
strategy of the predators, raising their own fitness which 
lowers the relative fitness of the predators. And so it 
continues, in an ongoing leap-frog co-evolution. 

Evolving with a changing environment – Chromosome 
evolution is inherent in a sufficiently designed GA, and 
satisfactory chromosomes will evolve if that is possible. The 
predator-prey experiments affirm that the GA employed can 
deal with a changing environment. In these robotic 
experiments, solution possibility is determined by sufficient 
sensory input, sufficient action capability, a sufficient fitness 
function, sufficiency of the chosen transform operators 
(crossover and mutation) and their stochastic parameters, 
sufficiency of selection-operator parameters, and an 
environment that permits a solution. These constraints on 
possibility are generally applicable to any GA application.  

Proactively innovative – A properly implemented GA is by 
nature proactively innovative; it creates speculative 
chromosomes in a search for a superior chromosome. All of 
the robotic experiments exhibit this capability. One unique GA 
driven experiment discussed in [10] used a physics-based 
simulation to evolved robot body configurations, made up of 
simple building blocks: bars of various lengths, joined by ball 
joints, and coupled with linear actuators that changed their 
length, controlled by a simple neural network. The fitness 
function was the robots’ ability to move a distance on a flat 
surface. After 300 generations, the fittest individual robot 
designs were fabricated and tested in the real world to 
validate the physics-based model. The picture of one of these 
evolved robots [10 Figure 5] looks like nothing designed by 
man, and is a clear example the GA acting innovatively and 
unpredictably. 

Harmonious with system purpose – A common 
characteristic of all the robotic evolution experiments is that 
the evolution did not back-slide to lesser fitness in the 
aggregate as a species. Harmony between generations is 
preserved by tuning the genetic algorithm to make 
incremental improvements through random crossover and 
mutation of the fittest individual robots’ chromosomes, without 
wholesale destruction of the evolutionary improvements 
gained to-date. 

 

V. FINANCIAL FORECASTING 
 
Mahfoud and Mani [11] describe a genetic algorithm to 

predict future performance of publically traded stocks. A GA is 
set up to analyze the performance of 1,600 publically traded 
stocks, and forecast the returns of each individual stock 12 
weeks in the future, relative to the average return of all the 
stocks. 

The information that the GA analyzes is time-phased 
historical data on 15 proprietary attributes (such as price-to-
earnings ratio and growth rate) for each stock. Instead of a 
simple bit array, the chromosome in the financial forecasting 
GA is composed of if-then rules that manipulate these 
attributes. Mahfoud and Mani cite a rule evolved in one of the 
experiments as: 

 
IF [Earnings Surprise Expectation > 10% and  

Volatility > 7% and . . .] 
THEN Prediction = Up 
 
One interesting feature of this chromosomal representation 

is the evolved rules can be understood by humans directly. 
The GA evolves the individuals’ chromosomes of if-then rules 
through selection, crossover, and mutation, which are then 
used to classify each of the stocks and produce a 
recommendation to buy or sell (or no recommendation), and a 
forecasted return for the stock 12 weeks in the future. 

Mahfoud and Mani compare the results of the financial 
forecasting GA with an established neural network (NN). This 
neural network had been used by the authors for three years 
to forecast stocks. Over 1,600 stocks are analyzed by the GA 
and the NN, and a series of predicted values are made over 
12 weeks. At the end of the period, the actual current values 
of the stocks are compared against the predicted values. In a 
related experiment, the relative realized rate of return for 
buys/sells is compared between the GA and the NN. The GA 
performs significantly better than the NN, and a combined 
GA+NN outperforms both. All three (GA, NN, and GA+NN) 
perform better than all market indices (Dow Jones Industrial 
Average, S&P 500, etc.) over the same period, to a 
statistically significant 95% confidence. 

Self-organizing – Self organization is inherent in GA 
applications, exhibited here as if-then rules are reconfigured 
until they successfully characterize and predict performance 
on a set of stocks. This GA application has the capability to 
output if-then rules suitable for embedding in a formal expert 
system for future forecasting: “…no expert is required, and 
hence the tedious process of transforming that expert’s 
knowledge into a set of rules is eliminated” [11: 562]. 

Adapting to unpredictable situations – The financial 
forecasting GA adapts to whatever historical stock data is 
available in its “environment”; achieving a suitable prediction 
regardless of the stock portfolio. 

Reactively resilient – The financial forecasting GA shares 
the inherent resilience of all GAs that use stochastic 
(probabilistic) methods to create new generations of candidate 
solutions, which allows for recovery from sub-optimal 
solutions. If a clause of an if-then rule (e.g., some attribute 
less than some value) is evolved but does not contribute to an 
optimal solution, the random application of crossover and 
mutation operators are able to explore alternate paths without 
getting stuck with that clause. 
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Evolving with a changing environment – The financial 
forecasting GA starts with randomly generated if-then rules, 
then evolves them over the course of generations by 
evaluating the fitness of each if-then rule, selecting the fittest 
individuals for the next generation, and applying the crossover 
and mutation operators to create a new generation of on-
average better if-then rules. Changing stocks within a portfolio 
(environment) will evolve a new set of predictions based on 
the portfolio content. 

Proactively innovative – A GA is inherently proactive in its 
speculative search for solutions fit to the environment. The 
financial forecasting GA develops innovative if-then rules that 
are different than a human creates. According to Mahfoud and 
Mani [11: 562], “a [human] expert is likely to produce a set of 
rules qualitatively different than then those produced by a GA, 
due in part to the expert’s a priori bias against counterintuitive 
or contrarian rules.” 

Harmonious with system purpose – Harmony between 
generations is preserved by tuning the GA to make 
incremental improvements through random crossover and 
mutation of the fittest if-then rules, without wholesale 
destruction of the evolutionary improvements to-date. 
Evidence of overall system harmony is the success of the GA 
compared with the neural network approach and with overall 
market indices. 

 
VI. CYBER SECURITY INTRUSION DETECTION 

 
Diaz-Gomez and Hougen [12] describe an off-line Intrusion 

Detection System (IDS) to examine audit trail (log) files. This 
work provides an example of the criticality of the fitness 
function for GA success. The Genetic Algorithm for Simplified 
Security Audit Trails Analysis (GASSATA) described by Mé 
[16] is analyzed and improved by Diaz-Gomez and Hougen, 
and the results of running a GA using these alternative fitness 
functions are compared. 

Computer-system audit logs record what the system and 
users are doing. An IDS may then analyze these audit logs to 
detect and report abnormal behavior that may indicate an 
attack. The method used by Diaz-Gomez and Hougen 
searches an audit trail for patterns of activities of known 
attacks. There may be many types of attacks, each with a 
large number of component activities. These activities are 
typically innocuous in isolation, but indicate an attack when 
combined in certain ways. Identifying the most likely attacks 
given an audit log of actual activities is a difficult problem to 
solve directly (the search is an NP-complete problem). 

In this example an attack matrix is constructed of all 
auditable events against all known attacks, where each 
element of the (sparse) matrix shows the number of 
occurrences of the event for that attack. The chromosome for 
each individual (candidate solution) is represented as a bit 
string, with a set bit indicating a hypothesis that the 
corresponding attack occurred. The fitness function evaluates 
how likely the hypothesized set of attacks occurred, given the 
actual events in the audit log. An initial population of 
individuals is generated randomly, and then successive 
generations are created through selection, crossover, and 
mutation. The GA is run through a number of generations until 
the change in maximum fitness between generations falls 
below some threshold. 

The GA used in this IDS example exhibits all six of the 
SAREPH characteristics. However, it is noted that this IDS 
system, at the macro level, exhibits neither evolution nor 
proactive innovation, as discussed below. 

Self-organizing – The GA in the IDS self-organizes to 
discover and analyze combinations of events in the audit log: 
over successive generations, individuals (candidate solutions) 
are reconfigured automatically toward higher average fitness, 
with no external decision-making. 

Adapting to unpredictable situations – Adaptation is 
generally exhibited by a GA implementation when it adapts to 
a different environment. In this example the environment is 
the collection of known attacks and known attack activities. 
That collection would be augmented periodically if the 
example IDS system were deployed, and nothing in the 
reviewed example appears to restrict or preclude appropriate 
adaptation. 

Reactively resilient – The GA in the example IDS 
performs crossover on selected parents with a probability of 
60%, and mutation with a probability of 2.4% [12: 5]. This 
randomness in creating candidate solutions allows for 
recovery from sub-optimal solutions. 

Evolving with a changing environment – Evolution is an 
inherent feature of any properly implemented genetic 
algorithm, but is dependent on the parameters employed for 
tuning the algorithm. With the adaptive capability and reactive 
resilience previously discussed, the reviewed example 
appears capable of evolving a new set of effective detection 
patterns if the environment changed. It should be noted, 
however, that the example IDS system does not evolve 
detection capability for zero-day never-seen-before attacks 
and attack activities. 

Proactively innovative – There is proactive innovation at 
the level of the GA in the creation of uniquely new candidate 
solutions at each generation through the application of genetic 
operators. From a higher point of view, however, the range of 
proactive innovation in this IDS example is limited, as it only 
deals with known attacks and known attack activities. 

Harmonious with system purpose – The GA 
implementation for this example IDS behaves harmoniously, 
preserving knowledge gained in previous generations through 
successive generations and converging on higher fitness. 
Again, this is generally inherent in any properly implemented 
GA, but is dependant on the nature of the fitness function and 
parameters tuned appropriately for the fitness landscape. This 
IDS’s GA fitness function exhibited improvement over the 
fitness function used in the GASSATA project [16] by retaining 
history to limit the occurrence of false positives and help the 
GA converge. 

 
VII. CONCLUSION 

 
The six SAREPH principles were employed to test the 

qualifications of a basic genetic algorithm. Without surprise, 
the basic genetic algorithm is a candidate pattern for the self-
organizing agile security pattern language under 
development. Genetic algorithms are presented here in the 
stylized format of a pattern to enhance communication and 
mutual understanding between systems and security 
engineers, and contribute to the understanding of self-
organizing agile systems of any kind. 
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As illustrated by the three examples of a genetic algorithm 
employed in diverse domains taken from the literature – 
behavior-controller training of simple robots, financial 
forecasting, and an IDS for computer security – properly 
deployed genetic algorithms exhibit all six “SAREPH” 
characteristics.  

Examining the pattern in multiple domains develops an 
appreciation of pattern employment under different 
circumstances, and helps focus pattern abstraction on domain 
independent fundamentals. 

The computer security example, however, shows that 
although the GA pattern is inherently capable of exhibiting all 
six SAREPH characteristics with appropriate fitness function 
and parameter tuning, that does not necessarily mean that a 
system built using a GA will itself exhibit all of the SAREPH 
characteristics. A higher-level lack of agility in a system can 
limit the potential of lower-level agile processes employed by 
the system. 

Patterns at this stage of the pattern project are considered 
preliminary. Each new pattern added helps refine the use of 
the generic pattern form as a description mechanism; and 
also helps refine the distinctions among the six SAREPH 
characteristics used as a pattern-qualifying filter. The work 
reported here wrestled with the need to include inversion as 
an operator – and concluded that there is value in a identifying 
the minimal GA pattern, with the expectation that an additional 
GA pattern will be added to the pattern family that includes 
inversion and the context and problem space in which 
inversion is necessary. 
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