
1
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012. Corrections made 2Aug2012

Basic Genetic Algorithm Pattern for Use In Self-Organizing Agile Security

Copyright Material IEEE
Paper No. ICCST-2012-41

 Rich Messenger Rick Dove
 Stevens Institute of Technology Member, IEEE
 Castle Point on Hudson Stevens Institute of Technology
 Hoboken, NJ 07030 Castle Point on Hudson
 USA Hoboken, NJ 07030
 USA

Abstract―Security strategies and techniques are falling
behind the agile pace of adversarial innovative capabilities. A
project is underway that has identified six so-called SAREPH
characteristics of adversarial self-organizing agility, and is
now cataloging patterns toward a pattern language of self-
organizing security techniques that can be employed for equal
or superior security agility. Many such patterns have recently
been developed. This paper adds the Genetic Algorithm (GA)
to the catalog. The essence of a GA is to express the problem
to be optimized in terms of a “fitness function” that evaluates
how well candidates optimize the solution. In natural evolution
fitness is an organism’s ability to survive and reproduce.
Computing applications abstract fitness to match the problem
at hand, such as an Intrusion Detection System attempting to
correlate seemingly unrelated events that collectively
constitute a threat. Reviewed first are the pattern project and
the general nature of the GA. A reusable generic pattern
description is developed. How the pattern conforms to the
SAREPH characteristics is shown. Then three examples from
the literature show how the pattern is employed in SAREPH
conformity: predator-prey behavior evolution in robot swarms,
future behavior prediction in financially traded stocks, and
attack detection in an Intrusion Detection System.

Index Terms―Intrusion detection, SAREPH.

I. INTRODUCTION

Self-organizing agile security appears to be a necessary

and new strategy to gain at least parity with the agility and
self-organization exhibited by the constant innovation and
evolution of adversarial communities.

The SDOE 683 graduate course on self-organizing agile
systems at Stevens Institute of Technology is identifying and
cataloging patterns for self-organizing agile security [1]. The
International Council on Systems Engineering (INCOSE)
Systems Security Engineering Working Group expects to
publish a catalog of refined and consistent patterns as an
INCOSE product when a sufficient number of patterns are
developed. The project is currently in a preliminary pattern
discovery phase, with minor changes in pattern representation
consistency and pattern qualifications both converging toward
a stable state.

The purpose of identifying these patterns is to accelerate
the adoption of this new strategy, and to do so by developing
a relevant common pattern language for systems engineers

and security engineers to discuss and understand the
essential characteristics.

The pattern project identified six common characteristics of
agile security systems, modeled on the advantageous agile-
practice characteristics observed in the security adversarial
communities. These six characteristics are referred to as
SAREPH, as summarized in Table I.

TABLE I
PATTERN QUALIFICATION SAREPH FILTERS

Table II shows the format that the pattern project is using to

capture and display essential pattern features. Each
candidate pattern is described in this structure. References
are provided in the pattern structure to facilitate deeper study
of pattern employment examples in a variety of domains,
where pattern-employment nuance under different situations
broadens the understanding.

TABLE II
PATTERN DESCRIPTION FORMAT

Pattern projects generally assemble commonly used

patterns that have been employed within a single domain,
such as construction architecture [2] or traditional-security
patterns [3]. Self-organizing cyber and physical security

[S] Self-organizing – with humans embedded in the loop,
or with systemic mechanisms.

[A] Adapting to unpredictable situations – with
reconfigurable, readily employed resources.

[R] Reactively resilient – able to continue, perhaps with
reduced functionality, while recovering.

[E] Evolving with a changing environment – driven by
situation and fitness evaluation.

[P] Proactively innovative – acting preemptively,
perhaps unpredictably, to gain advantage.

[H] Harmonious with system purpose – aiding rather than
degrading system/user productivity.

Name: Descriptive name for the pattern.
Context: Situation that the pattern applies to.
Problem: Description of the problem.
Forces: Tradeoffs, value contradictions, key dynamics of
tension and balance, constraints.
Solution: Description of the solution.
Graphic: A depiction of response dynamics.
Agility: Qualifying SAREPH characteristics.
Examples: Referenced cases of pattern employment.

2
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012. Corrections made 2Aug2012

doesn’t have an historical record from which patterns can be
drawn; so at this stage the pattern project is drawing upon a
variety of domains where appropriate patterns can be found,
most frequently in natural systems, where sustainable security
is a fundamental and primary objective.

Consequently, non-cyber/physical security domain
examples are necessarily used to provide pattern base-lines,
examples, and application nuance.

The working theory for the pattern project requires that
pattern candidates include at least four of the SAREPH
characteristics as follows:

• The pattern exhibits both Self-organizing and
Harmonious characteristics.

• The pattern exhibits either or both of the Evolving
and Adapting characteristics.

• The pattern exhibits either or both of the Proactive
and Reactive characteristics.

Evolution in natural systems occurs through successive
generations, and the genetic algorithm typically employs this
concept. In artificial systems the concept of successive
generations may become blurred at times, when a system
maintains identity but adapts or improves certain aspects of its
functionality through experimentation and selection that may
employ a genetic algorithm. In this later case the pattern
project wants to clearly distinguish between evolution and
adaptation; though at this early stage some confusion may be
evident in some pattern descriptions previously published.

This paper presents a basic genetic algorithm as a
candidate pattern for the self-organizing agile security pattern
project.

II. GENETIC ALGORITHM INTRODUCTION

Life on earth has a breathtaking diversity, thriving in

innumerable niches. Natural selection (survival of the fittest)
and variety arising from reproduction mechanisms has
evolved organisms and their life sustaining processes suitable
to diverse niches. In computer science, a genetic algorithm
(GA) is an abstracted computational model of the underlying
mechanism of natural evolution, typically applied to learning,
searching, and optimization problems.

The genetic algorithm methods described here are based
on techniques initially developed by John Holland and his
students and colleagues at the University of Michigan in the
1960’s and 1970’s, popularized by the publishing of his
landmark text on the subject [4]. Since that time the GA has
been a widely-used algorithm to address problems in
optimization and in modeling artificial life [5].

The essence of a genetic algorithm is to express the
solution to an optimization problem in terms of a “fitness
function” that evaluates how well candidate solutions address
the problem. In natural evolution, fitness is the organism’s
ability to survive and reproduce. Computing applications, on
the other hand, abstract fitness to match the problem at hand.
In robotics, for example, fitness may represent a robot’s ability
to navigate successfully. In keeping with the evolutionary
metaphor, the candidate solutions are called “individuals,” the
encoding of each candidate solution is called its
“chromosome”, and each distinct element within a
chromosome is called a “gene”.

A common computational representation of a chromosome
is a bit string or a string of integers for simplicity of

manipulation; but many variant representations are possible.
With this structure in place, the GA applies “operators” based
on natural evolution to evolve an initial randomly-generated
(un-fit) population of individuals into more fit individuals, until a
suitably fit individual emerges. The GA creates new
generations of individuals from previous generations, evolving
their chromosomes until a time limit is reached or until
sufficient fitness is achieved.

The choice of chromosome representation may make the
difference between a successful GA and a failure. For
example, Forrest and Mitchell [6] discuss chromosome
encoding schemes whose properties inhibit the GA from
reaching higher-order solutions due to the combinatorial
relationship between genes in the chromosomal
representation and the corresponding features of the best
solution.

To create a new generation, the GA evaluates the fitness of
the individuals in the current generation using the fitness
function, and then selects the fittest individuals stochastically,
i.e., with some randomization. The fittest individuals are
selected to breed new individuals for the next generation with
the GA crossover operator, which mimics sexual reproduction
in nature – two individuals are selected to breed, and their
children’s chromosomes are created by swapping a portion
from each parents’ chromosome at a randomly-selected
location. Other moderately fit individuals in the current
generation are allowed to survive to the next generation, and
the least fit individuals are replaced by the new products of
crossover to maintain the overall population size. The other
commonly applied GA operator is mutation – occasionally, a
random gene (bit or string of bits) of a chromosome is
changed for the next generation.

There is a third GA transform operator modeled on natural
evolution called inversion, which randomly reverses the order
of a group of genes in the chromosome – a bulk form of
mutation effective and efficient for certain problem types.
Mitchell and Forrest noted in a seminal 1994 paper [5] that
“Inversion is rarely used in today's GAs, at least partially
because of the implementation expense for most
representations.” That implementation expense may not be
the factor today it was then; but as crossover and mutation
are able to evolve the same chromosomal outcomes, the
Basic Genetic Algorithm pattern described in this paper
includes only the selection operator and the crossover and
mutation transform operators, recognizing them as minimally
necessary.

For the interested reader, there are many variations and
additional operators for GAs described by Aga in [7]; but the
essential features are chromosomal encoding of multiple
distinct individuals, repetitive selection of the fittest individuals
over multiple generations, and stochastic application of
transformation operators to create new generations.

The inherent randomness of the selection, crossover, and
mutation operators allows a GA to explore the “fitness
landscape” to find novel solutions. Introducing random
changes to the current best solutions is a trade-off between
exploration of new territory in the fitness landscape and
exploitation of the currently-known best solutions (local
optima). The mutation operator is applied much less often
than crossover, but importantly helps the GA avoid getting
stuck at local optima.

3
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012. Corrections made 2Aug2012

GAs explore many independent hypotheses in parallel at
the same time; and are well suited to problems where the
fitness landscape is complex and not well structured. Given a
suitable problem, GAs converge relatively quickly on good
solutions, but may not converge on the absolute optimal
solution – resembling biological natural selection.

For more on the subject, a commonly cited book is Melanie
Mitchell’s Introduction to Genetic Algorithms [8], and John

Holland has a very readable Scientific American [9]
introduction to genetic algorithms available on the web.

III. GENETIC ALGORITHM PATTERN

Table III describes the basic genetic algorithm as a

candidate pattern. Note that there are many ways to embellish
this algorithm in detail implementations not addressed here.

TABLE III
BASIC GENETIC ALGORITHM PATTERN

Name: Basic Genetic Algorithm (with selection, crossover, and mutation operators)
Context: A system or process faced with a multi-dimensional problem that requires systemic learning or searching to find an
optimal solution.
Problem: Multiple or complex trade-offs for optimization; lack of a priori understanding of how to solve a problem;
environment may vary over time; hill-climbing or other optimization algorithms get stuck at local optima.
Forces: Exploration vs. exploitation; computationally-intensive vs. approximate fitness function; rate of crossover vs.
mutation; rapid convergence vs. more trials.
Solution: Express the problem domain with a genetic representation amenable to crossover and mutation operators.
Develop a function to evaluate the fitness of individuals at each generation. Choose the initial generation of individuals,
randomly or by seeding. Create successive generations by selecting the fittest individuals in the current generation by
applying the fitness function with some random variation, and then randomly applying genetic operators (crossover of
chromosomes from two individuals, random mutation of a chromosome, possibly others) on these fit individuals to create
uniquely-new individuals for the next generation, with higher average fitness than the previous generation.

Genetic Algorithm Evolution: Best fitness evaluations–keep all; midrange fitness evaluations–keep some, mutate others; worst

fitness evaluation–replace with crossover mix of best fitness evaluations.
[S]elf organization occurs as iterative chromosome experimentation searches for optimal chromosome configurations that

satisfy the fitness landscape.
[A]daptation occurs within the GA pattern when it accommodates additional or replaced factors in the fitness evaluation

required by a change in the environment.
[R]eactive resilience is exhibited when unfit or low-fit chromosomes are identified and replaced by new alternatives, and with

continued fitness evaluations after convergence on an optimal set in case a changing environment reduces the fitness of
the converged set.

[E]volution occurs as a stable fitness function converges on the discovery of a solution with optimal fitness.
[P]roactive innovation occurs by breeding uniquely-new speculative individuals at each generation using the genetic

operators of selection, crossover and mutation.
[H]armony between generations is maintained when the majority of good-fit individuals are preserved from the previous

generation, minimizing the effects of new-chromosome experimentation.
Example – Natural evolution – variations in next generation created by crossover (sexual reproduction) and mutation of

chromosomes in fit individuals (i.e., those that survive to breed) [4, 9].
Example – Robotics – GA that trains neural networks for collision-free navigation, homing, predator-prey co-evolution, joint

evolution of brains and body morphology, and evolution of cooperation and altruism [10].
Example – Financial forecasting – genetic algorithm to predict the performance of publically traded stocks [11].
Example – Cyber security – Intrusion Detection System (IDS) using a genetic algorithm [12].
Example – Cyber security – Genetic algorithm used for network intrusion detection [13].
Example – Cyber security –Attack detection using a genetic algorithm in a policy based network [14].

4
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012. Corrections made 2Aug2012

Three examples from the literature in diverse domains are
discussed next. Each example is characterized with respect to
the SAREPH principles described in Table I.

IV. ROBOT BEHAVIOR EVOLUTION

Floreano, in a fascinating and revealing report [10],

employed GAs to evolve neural networks that control simple
robots. These small wheeled robots learned collision-free
navigation and homing, cooperation and altruism behaviors,
and continuous cycle predator-prey co-evolution. For a deeper
treatment of GAs combined with artificial neural networks see
[15].

In all cases a simple neural net controlled a robot’s wheel
speed and direction as output, with input from eight object
distance sensors. In some cases additional sensors were

employed, such as one for detecting the robot’s recharging
“home” for the homing test, and sensors on “prey” that could
distinguish a “predator”, and vice versa. The fitness function
for the different cases was set for the experimental task.

Neural net connections have relevance weights, from zero
for no connection to something with positive or negative
significance. A robot’s GA evolves chromosomes that
designate these weights, through successive generations of
robot “life” in a fixed population of robots. At the completion of
each generation’s life span, the GA stochastically selects
chromosomes with promise to create the next generation of
robotic neural net weights. Fig. 1, reprinted from [10], depicts
the GA’s neural-net-weighting evolutionary cycle. Only
crossover and mutation chromosome-transformation
operators were employed.

Fig. 1 – (as depicted and captioned in [10]) Major steps of Darwinian selection with robots. 1) The robots have a neural network with the
strength of connections between neurons determining their behaviour as a function of the information provided by the environment. 2) The
fitness f of each robot (i.e., the performance in the task assigned to them) is measured in the experimental setting using real robots or physics-
based simulators. 3) The genomes of robots with highest fitness are selected to form a new generation. 4) The selected genomes are paired to
perform crossover and mutations. 5) The new genomes are used to perform a new round of selection in the next generation.

Robots with different chromosomes behave differently,

affecting their fitness. Fitness may be defined as how fast and
straight a robot moves and how often it avoids obstacles; or in
the case of predator-pray experiments, how successful prey is
at avoiding contact with predator, and how successful
predator is at catching prey, within a time limit.

Typically robots from a population of 80-100 were
employed with different initial chromosome weight-genes.
Trials within a generation were done two robots at a time,
within a small walled perimeter containing additional obstacles
for some test cases.

Floreano notes: “In all cases, robots initially exhibited
completely uncoordinated behaviour because their genomes
had random values. However, a few hundreds of generations
of random mutations and selective reproduction were
sufficient to promote the evolution of efficient behaviours in a
wide range of environmental conditions. The ability of robots
to orientate, escape predators, and even cooperate is
particularly remarkable given that they had deliberately simple

genotypes directly mapped into the connection weights of
neural networks comprising only a few dozen neurons.”

 Notably, Floreano discusses the shortcomings of
generation trials in simulation vs. those carried out in the “real
world” – in this case meaning actual robots navigating within
the experimental perimeter. Real-word evolution discovers
idiosyncratic environmental factors of value that are typically
missing in simulation models. Nevertheless, many of the trials
employed simulations initially to speed up early convergence
and then finished with a series of real-world trials for final
chromosome evolution.

 This example of GA employment exhibits all six of the
SAREPH characteristics, as described next.

Self-organizing – Each new generation of robotic control is
systemically re-designed by using the crossover and mutation
operators on the chromosomes from the fittest robots of
previous generation. The fittest behaviors are selected as
those that achieve the highest measured ability to achieve the

5
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012. Corrections made 2Aug2012

task at hand. Behavior trait convergence is self-organizing
without external decision-making.

Adapting to unpredictable situations – The predator-
prey case is a good example of adaptation to a changing
environment. As prey became more adept at avoiding
predation, the predators adapted to their own less-fit condition
and evolved new successful strategies, which in turn caused
the prey to adapt by evolving new avoidance strategies. The
basic GA implementation remained the same, converging on
new chromosome sets appropriate to the environmental
change.

Reactively resilient – The GA generates new
chromosomes with crossover and mutation operators rather
than wholesale random replacement. This has the effect of
maintaining some prior history in new chromosomes, which
lends resilience when chromosome changes are less fit in a
new generation than in a prior generation. In the predator/prey
task, the predators react to the behavior of the prey, and
evolve a new approach to predation that increases their
fitness, thereby lowering the relative fitness of the prey. This
causes the prey to evolve new behavior to counteract the
strategy of the predators, raising their own fitness which
lowers the relative fitness of the predators. And so it
continues, in an ongoing leap-frog co-evolution.

Evolving with a changing environment – Chromosome
evolution is inherent in a sufficiently designed GA, and
satisfactory chromosomes will evolve if that is possible. The
predator-prey experiments affirm that the GA employed can
deal with a changing environment. In these robotic
experiments, solution possibility is determined by sufficient
sensory input, sufficient action capability, a sufficient fitness
function, sufficiency of the chosen transform operators
(crossover and mutation) and their stochastic parameters,
sufficiency of selection-operator parameters, and an
environment that permits a solution. These constraints on
possibility are generally applicable to any GA application.

Proactively innovative – A properly implemented GA is by
nature proactively innovative; it creates speculative
chromosomes in a search for a superior chromosome. All of
the robotic experiments exhibit this capability. One unique GA
driven experiment discussed in [10] used a physics-based
simulation to evolved robot body configurations, made up of
simple building blocks: bars of various lengths, joined by ball
joints, and coupled with linear actuators that changed their
length, controlled by a simple neural network. The fitness
function was the robots’ ability to move a distance on a flat
surface. After 300 generations, the fittest individual robot
designs were fabricated and tested in the real world to
validate the physics-based model. The picture of one of these
evolved robots [10 Figure 5] looks like nothing designed by
man, and is a clear example the GA acting innovatively and
unpredictably.

Harmonious with system purpose – A common
characteristic of all the robotic evolution experiments is that
the evolution did not back-slide to lesser fitness in the
aggregate as a species. Harmony between generations is
preserved by tuning the genetic algorithm to make
incremental improvements through random crossover and
mutation of the fittest individual robots’ chromosomes, without
wholesale destruction of the evolutionary improvements
gained to-date.

V. FINANCIAL FORECASTING

Mahfoud and Mani [11] describe a genetic algorithm to

predict future performance of publically traded stocks. A GA is
set up to analyze the performance of 1,600 publically traded
stocks, and forecast the returns of each individual stock 12
weeks in the future, relative to the average return of all the
stocks.

The information that the GA analyzes is time-phased
historical data on 15 proprietary attributes (such as price-to-
earnings ratio and growth rate) for each stock. Instead of a
simple bit array, the chromosome in the financial forecasting
GA is composed of if-then rules that manipulate these
attributes. Mahfoud and Mani cite a rule evolved in one of the
experiments as:

IF [Earnings Surprise Expectation > 10% and

Volatility > 7% and . . .]
THEN Prediction = Up

One interesting feature of this chromosomal representation

is the evolved rules can be understood by humans directly.
The GA evolves the individuals’ chromosomes of if-then rules
through selection, crossover, and mutation, which are then
used to classify each of the stocks and produce a
recommendation to buy or sell (or no recommendation), and a
forecasted return for the stock 12 weeks in the future.

Mahfoud and Mani compare the results of the financial
forecasting GA with an established neural network (NN). This
neural network had been used by the authors for three years
to forecast stocks. Over 1,600 stocks are analyzed by the GA
and the NN, and a series of predicted values are made over
12 weeks. At the end of the period, the actual current values
of the stocks are compared against the predicted values. In a
related experiment, the relative realized rate of return for
buys/sells is compared between the GA and the NN. The GA
performs significantly better than the NN, and a combined
GA+NN outperforms both. All three (GA, NN, and GA+NN)
perform better than all market indices (Dow Jones Industrial
Average, S&P 500, etc.) over the same period, to a
statistically significant 95% confidence.

Self-organizing – Self organization is inherent in GA
applications, exhibited here as if-then rules are reconfigured
until they successfully characterize and predict performance
on a set of stocks. This GA application has the capability to
output if-then rules suitable for embedding in a formal expert
system for future forecasting: “…no expert is required, and
hence the tedious process of transforming that expert’s
knowledge into a set of rules is eliminated” [11: 562].

Adapting to unpredictable situations – The financial
forecasting GA adapts to whatever historical stock data is
available in its “environment”; achieving a suitable prediction
regardless of the stock portfolio.

Reactively resilient – The financial forecasting GA shares
the inherent resilience of all GAs that use stochastic
(probabilistic) methods to create new generations of candidate
solutions, which allows for recovery from sub-optimal
solutions. If a clause of an if-then rule (e.g., some attribute
less than some value) is evolved but does not contribute to an
optimal solution, the random application of crossover and
mutation operators are able to explore alternate paths without
getting stuck with that clause.

6
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012. Corrections made 2Aug2012

Evolving with a changing environment – The financial
forecasting GA starts with randomly generated if-then rules,
then evolves them over the course of generations by
evaluating the fitness of each if-then rule, selecting the fittest
individuals for the next generation, and applying the crossover
and mutation operators to create a new generation of on-
average better if-then rules. Changing stocks within a portfolio
(environment) will evolve a new set of predictions based on
the portfolio content.

Proactively innovative – A GA is inherently proactive in its
speculative search for solutions fit to the environment. The
financial forecasting GA develops innovative if-then rules that
are different than a human creates. According to Mahfoud and
Mani [11: 562], “a [human] expert is likely to produce a set of
rules qualitatively different than then those produced by a GA,
due in part to the expert’s a priori bias against counterintuitive
or contrarian rules.”

Harmonious with system purpose – Harmony between
generations is preserved by tuning the GA to make
incremental improvements through random crossover and
mutation of the fittest if-then rules, without wholesale
destruction of the evolutionary improvements to-date.
Evidence of overall system harmony is the success of the GA
compared with the neural network approach and with overall
market indices.

VI. CYBER SECURITY INTRUSION DETECTION

Diaz-Gomez and Hougen [12] describe an off-line Intrusion

Detection System (IDS) to examine audit trail (log) files. This
work provides an example of the criticality of the fitness
function for GA success. The Genetic Algorithm for Simplified
Security Audit Trails Analysis (GASSATA) described by Mé
[16] is analyzed and improved by Diaz-Gomez and Hougen,
and the results of running a GA using these alternative fitness
functions are compared.

Computer-system audit logs record what the system and
users are doing. An IDS may then analyze these audit logs to
detect and report abnormal behavior that may indicate an
attack. The method used by Diaz-Gomez and Hougen
searches an audit trail for patterns of activities of known
attacks. There may be many types of attacks, each with a
large number of component activities. These activities are
typically innocuous in isolation, but indicate an attack when
combined in certain ways. Identifying the most likely attacks
given an audit log of actual activities is a difficult problem to
solve directly (the search is an NP-complete problem).

In this example an attack matrix is constructed of all
auditable events against all known attacks, where each
element of the (sparse) matrix shows the number of
occurrences of the event for that attack. The chromosome for
each individual (candidate solution) is represented as a bit
string, with a set bit indicating a hypothesis that the
corresponding attack occurred. The fitness function evaluates
how likely the hypothesized set of attacks occurred, given the
actual events in the audit log. An initial population of
individuals is generated randomly, and then successive
generations are created through selection, crossover, and
mutation. The GA is run through a number of generations until
the change in maximum fitness between generations falls
below some threshold.

The GA used in this IDS example exhibits all six of the
SAREPH characteristics. However, it is noted that this IDS
system, at the macro level, exhibits neither evolution nor
proactive innovation, as discussed below.

Self-organizing – The GA in the IDS self-organizes to
discover and analyze combinations of events in the audit log:
over successive generations, individuals (candidate solutions)
are reconfigured automatically toward higher average fitness,
with no external decision-making.

Adapting to unpredictable situations – Adaptation is
generally exhibited by a GA implementation when it adapts to
a different environment. In this example the environment is
the collection of known attacks and known attack activities.
That collection would be augmented periodically if the
example IDS system were deployed, and nothing in the
reviewed example appears to restrict or preclude appropriate
adaptation.

Reactively resilient – The GA in the example IDS
performs crossover on selected parents with a probability of
60%, and mutation with a probability of 2.4% [12: 5]. This
randomness in creating candidate solutions allows for
recovery from sub-optimal solutions.

Evolving with a changing environment – Evolution is an
inherent feature of any properly implemented genetic
algorithm, but is dependent on the parameters employed for
tuning the algorithm. With the adaptive capability and reactive
resilience previously discussed, the reviewed example
appears capable of evolving a new set of effective detection
patterns if the environment changed. It should be noted,
however, that the example IDS system does not evolve
detection capability for zero-day never-seen-before attacks
and attack activities.

Proactively innovative – There is proactive innovation at
the level of the GA in the creation of uniquely new candidate
solutions at each generation through the application of genetic
operators. From a higher point of view, however, the range of
proactive innovation in this IDS example is limited, as it only
deals with known attacks and known attack activities.

Harmonious with system purpose – The GA
implementation for this example IDS behaves harmoniously,
preserving knowledge gained in previous generations through
successive generations and converging on higher fitness.
Again, this is generally inherent in any properly implemented
GA, but is dependant on the nature of the fitness function and
parameters tuned appropriately for the fitness landscape. This
IDS’s GA fitness function exhibited improvement over the
fitness function used in the GASSATA project [16] by retaining
history to limit the occurrence of false positives and help the
GA converge.

VII. CONCLUSION

The six SAREPH principles were employed to test the

qualifications of a basic genetic algorithm. Without surprise,
the basic genetic algorithm is a candidate pattern for the self-
organizing agile security pattern language under
development. Genetic algorithms are presented here in the
stylized format of a pattern to enhance communication and
mutual understanding between systems and security
engineers, and contribute to the understanding of self-
organizing agile systems of any kind.

7
IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 15-18 Oct. 2012. Corrections made 2Aug2012

As illustrated by the three examples of a genetic algorithm
employed in diverse domains taken from the literature –
behavior-controller training of simple robots, financial
forecasting, and an IDS for computer security – properly
deployed genetic algorithms exhibit all six “SAREPH”
characteristics.

Examining the pattern in multiple domains develops an
appreciation of pattern employment under different
circumstances, and helps focus pattern abstraction on domain
independent fundamentals.

The computer security example, however, shows that
although the GA pattern is inherently capable of exhibiting all
six SAREPH characteristics with appropriate fitness function
and parameter tuning, that does not necessarily mean that a
system built using a GA will itself exhibit all of the SAREPH
characteristics. A higher-level lack of agility in a system can
limit the potential of lower-level agile processes employed by
the system.

Patterns at this stage of the pattern project are considered
preliminary. Each new pattern added helps refine the use of
the generic pattern form as a description mechanism; and
also helps refine the distinctions among the six SAREPH
characteristics used as a pattern-qualifying filter. The work
reported here wrestled with the need to include inversion as
an operator – and concluded that there is value in a identifying
the minimal GA pattern, with the expectation that an additional
GA pattern will be added to the pattern family that includes
inversion and the context and problem space in which
inversion is necessary.

VIII. REFERENCES

[1] Rick Dove, “Pattern Qualifications and Examples of Next-

Generation Agile System-Security Strategies,” IEEE
International Carnahan Conference on Security
Technology (ICCST), San Jose, CA (US), 5-8 Oct. 2010,

[2] Christopher Alexander, A Pattern Language: Towns,
Buildings, Construction, Oxford University Press, 1977.

[3] Markus Schumacher, Eduardo Fernandez-Buglioni,
Duane Hybertson, Frank Buschmann, Peter
Summerland, Security Patterns: Integrating Security and
Systems Engineering, Wiley, 2006.

[4] John Holland, Adaptation in Natural and Artificial
Systems. Ann Arbor: University of Michigan Press, 1975.

[5] Melanie Mitchell and Stephanie Forrest, “Genetic
Algorithms and Artificial Life,” Artificial Life, 1 (3): 267-
289, 1994.

[6] Stephanie Forrest and Melanie Mitchell, “What Makes a
Problem Hard for a Genetic Algorithm? Some Anomalous
Results and Their Explanation,” Machine Learning, 13:
285-319, 1993.

[7] P. Larran Aga, C.M.H. Kuijpers, R.H. Murga, I. Inza and
S. Dizdarevic, “Genetic Algorithms for the Travelling
Salesman Problem: A Review of Representations and
Operators,” Artificial Intelligence Review 13: 129–170,
Kluwer Academic Publishers, 1999.

[8] Melanie Mitchell, An Introduction to Genetic Algorithms
(Complex Adaptive Systems). A Bradford Book, Third
Edition, 1998.

[9] John H. Holland, “Genetic Algorithms.” Scientific
American, 267 (1): 66-72, 1992.
http://www2.econ.iastate.edu/tesfatsi/holland.gaintro.htm

[10] Dario Floreano and Laurent Keller, “Evolution of Adaptive
Behaviour in Robots by Means of Darwinian Selection,”
PLoS Biol 8(1): e1000292, Jan. 2010.

[11] Sam Mahfoud and Ganesh Mani, “Financial forecasting
using genetic algorithms.” Applied Artificial Intelligence,
10 (6): 543-565, 1996.

[12] Pedro A. Diaz-Gomez and Dean F. Hougen, “Improved
Off-Line Intrusion Detection Using a Genetic Algorithm,”
Proceedings of the Seventh International Conference on
Enterprise Information Systems, Miami (US), 24-28 May
2005.

[13] Wei Li, “Using Genetic Algorithm for Network Intrusion
Detection.” Proceedings of the United States Department
of Energy Cyber Security Group 2004 Training
Conference, Kansas City, Kansas (US), 24-27 May 2004.

[14] Alim Al Islam, Ariful Azad, Khurshid Alam, Shamsul Alam,
“Security Attack Detection using Genetic Algorithm (GA)
in Policy Based Network,” Proceedings of the IEEE
International Conference on Information and
Communication Technology, pp 341-347, 2007.

[15] David Streisand and Rick Dove, “Basic Genetic-
Algorithm-Neural-Network (GANN) Pattern with a Self-
Organizing Security Example,” IEEE International
Carnahan Conference on Security Technology (ICCST),
Boston, MA (US),15-18 Oct. 2012.

[16] Ludovic Mé, “GasSAtA, a Genetic Algorithm as an
Alternative Tool for Security Audit Trails Analysis,” In First
International Workshop on the Recent Advances in
Intrusion Detection, Louvain-la-Neuve, Belgium, 14-16
Sep1998.

IX. VITA

Rich Messenger is a systems engineer in the U.S. defense

industry, and during the past 27 years has been a software
and systems engineer for a diverse collection of defense and
intelligence systems and research projects, satellite ground
stations, and bioinformatics systems. He holds a BS in
Computer Science from Purdue University, and is working on
an ME in Systems Engineering from Stevens Institute of
Technology.

Rick Dove develops agile self-organizing systems as a
principle investigator and application program manager at
Paradigm Shift International, and chairs the INCOSE working
group for Systems Security Engineering. He is an adjunct
professor at Stevens Institute of Technology in the School of
Systems and Enterprises where he teaches basic and
advanced courses in agile systems, and is author of
Response Ability – the Language, Structure, and Culture of
the Agile Enterprise (Wiley 2001). He co-led the OSD/Navy-
funded project that identified systems agility as the new
competitive frontier, and then led the research at the
DARPA/NSF-funded Agility Forum. He holds a BSEE from
Carnegie Mellon University, with graduate work in Computer
Science at U.C. Berkeley.

